Tackling Distribution Shift in LLM via KILO: Knowledge-Instructed Learning for Continual Adaptation
- URL: http://arxiv.org/abs/2508.03571v1
- Date: Tue, 05 Aug 2025 15:39:37 GMT
- Title: Tackling Distribution Shift in LLM via KILO: Knowledge-Instructed Learning for Continual Adaptation
- Authors: Iing Muttakhiroh, Thomas Fevens,
- Abstract summary: Large Language Models (LLMs) often suffer from performance degradation when faced with domain shifts.<n>We propose KILO, a novel continual learning framework that integrates dynamic knowledge graphs with instruction tuning.
- Score: 0.35297361401370037
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) often suffer from performance degradation when faced with domain shifts, primarily due to catastrophic forgetting. In this work, we propose KILO (Knowledge-Instructed Learning for Continual Adaptation), a novel continual learning framework that integrates dynamic knowledge graphs with instruction tuning. By leveraging retrieved domain-specific knowledge as guidance during training, KILO enhances both adaptability to new domains and retention of previously acquired knowledge. We pretrain our model on WikiText-103 and evaluate sequential adaptation across four diverse target domains: BioASQ, SciQ, TweetEval, and MIND. Our experiments demonstrate that KILO consistently outperforms strong baselines, including continual fine-tuning, ERNIE 2.0, and CPT, in terms of backward transfer, forward transfer, F1 score, retention rate, and training efficiency. These results highlight the effectiveness of combining structured knowledge retrieval and instruction prompting to overcome domain shift challenges in continual learning scenarios.
Related papers
- Addressing Imbalanced Domain-Incremental Learning through Dual-Balance Collaborative Experts [59.615381619866284]
Domain-Incremental Learning (DIL) focuses on continual learning in non-stationary environments.<n>DIL faces two critical challenges in the context of imbalanced data: intra-domain class imbalance and cross-domain class distribution shifts.<n>We introduce the Dual-Balance Collaborative Experts (DCE) framework to overcome these challenges.
arXiv Detail & Related papers (2025-07-09T17:57:07Z) - Hierarchical Subspaces of Policies for Continual Offline Reinforcement Learning [19.463863037999054]
We consider a Continual Reinforcement Learning setup, where a learning agent must continuously adapt to new tasks while retaining previously acquired skill sets.<n>We introduce HiSPO, a novel hierarchical framework designed specifically for continual learning in navigation settings from offline data.<n>We demonstrate, through a careful experimental study, the effectiveness of our method in both classical MuJoCo maze environments and complex video game-like navigation simulations.
arXiv Detail & Related papers (2024-12-19T14:00:03Z) - Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA [19.982853959240497]
Pre-trained vision-language embedding models such as CLIP have been widely adopted and validated in Continual Learning (CL)<n>Existing CL methods primarily focus on continual downstream adaptation using components isolated from the pre-trained model (PTM)<n>We propose a universal and efficient CL approach for CLIP based on Dynamic Rank-Selective LoRA (CoDyRA)
arXiv Detail & Related papers (2024-12-01T23:41:42Z) - Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.<n>Our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment [120.06538000214552]
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions.
We propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT.
Our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains.
arXiv Detail & Related papers (2024-07-15T15:20:13Z) - Injecting New Knowledge into Large Language Models via Supervised Fine-Tuning [13.371405067535814]
This paper investigates the effectiveness ofSupervised Fine-Tuning (SFT) as a method for knowledge injection in Large Language Models (LLMs)
We compare different dataset generation strategies -- token-based and fact-based scaling -- to create training data that helps the model learn new information.
Our results show considerable performance improvements in Q&A tasks related to out-of-domain knowledge.
arXiv Detail & Related papers (2024-03-30T01:56:07Z) - Investigating Continual Pretraining in Large Language Models: Insights and Implications [9.660013084324817]
Continual learning in large language models (LLMs) is an evolving domain that focuses on developing efficient and sustainable training strategies.<n>We introduce a new benchmark designed to measure the adaptability of LLMs to changing pretraining data landscapes.<n>Our findings uncover several key insights: (i) continual pretraining consistently improves 1.5B models studied in this work and is also superior to domain adaptation, (ii) larger models always achieve better perplexity than smaller ones when continually pretrained on the same corpus, (iii) smaller models are particularly sensitive to continual pretraining, showing the most significant rates of both learning and
arXiv Detail & Related papers (2024-02-27T10:47:24Z) - Online Continual Learning via the Knowledge Invariant and Spread-out
Properties [4.109784267309124]
Key challenge in continual learning is catastrophic forgetting.
We propose a new method, named Online Continual Learning via the Knowledge Invariant and Spread-out Properties (OCLKISP)
We empirically evaluate our proposed method on four popular benchmarks for continual learning: Split CIFAR 100, Split SVHN, Split CUB200 and Split Tiny-Image-Net.
arXiv Detail & Related papers (2023-02-02T04:03:38Z) - On effects of Knowledge Distillation on Transfer Learning [0.0]
We propose a machine learning architecture we call TL+KD that combines knowledge distillation with transfer learning.
We show that using guidance and knowledge from a larger teacher network during fine-tuning, we can improve the student network to achieve better validation performances like accuracy.
arXiv Detail & Related papers (2022-10-18T08:11:52Z) - Continual Learning for Natural Language Generation in Task-oriented
Dialog Systems [72.92029584113676]
Natural language generation (NLG) is an essential component of task-oriented dialog systems.
We study NLG in a "continual learning" setting to expand its knowledge to new domains or functionalities incrementally.
The major challenge towards this goal is catastrophic forgetting, meaning that a continually trained model tends to forget the knowledge it has learned before.
arXiv Detail & Related papers (2020-10-02T10:32:29Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.