Zero-Variance Gradients for Variational Autoencoders
- URL: http://arxiv.org/abs/2508.03587v1
- Date: Tue, 05 Aug 2025 15:54:21 GMT
- Title: Zero-Variance Gradients for Variational Autoencoders
- Authors: Zilei Shao, Anji Liu, Guy Van den Broeck,
- Abstract summary: Training deep generative models like Variational Autoencoders (VAEs) is often hindered by the need to backpropagate gradients through sampling of their latent variables.<n>In this paper, we propose a new perspective that sidesteps this problem, which we call Silent Gradients.<n>Instead of improving estimators, we leverage specific decoder architectures analytically to compute the expected ELBO, yielding a gradient with zero variance.
- Score: 32.818968022327866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training deep generative models like Variational Autoencoders (VAEs) is often hindered by the need to backpropagate gradients through the stochastic sampling of their latent variables, a process that inherently introduces estimation variance, which can slow convergence and degrade performance. In this paper, we propose a new perspective that sidesteps this problem, which we call Silent Gradients. Instead of improving stochastic estimators, we leverage specific decoder architectures to analytically compute the expected ELBO, yielding a gradient with zero variance. We first provide a theoretical foundation for this method and demonstrate its superiority over existing estimators in a controlled setting with a linear decoder. To generalize our approach for practical use with complex, expressive decoders, we introduce a novel training dynamic that uses the exact, zero-variance gradient to guide the early stages of encoder training before annealing to a standard stochastic estimator. Our experiments show that this technique consistently improves the performance of established baselines, including reparameterization, Gumbel-Softmax, and REINFORCE, across multiple datasets. This work opens a new direction for training generative models by combining the stability of analytical computation with the expressiveness of deep, nonlinear architecture.
Related papers
- Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent [7.248102801711294]
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points.<n>We introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry.<n>We propose computational strategies that enable both efficient training and fully parameter-free inference.
arXiv Detail & Related papers (2025-07-15T16:33:01Z) - A Simplified Analysis of SGD for Linear Regression with Weight Averaging [64.2393952273612]
Recent work bycitetzou 2021benign provides sharp rates for SGD optimization in linear regression using constant learning rate.<n>We provide a simplified analysis recovering the same bias and variance bounds provided incitepzou 2021benign based on simple linear algebra tools.<n>We believe our work makes the analysis of gradient descent on linear regression very accessible and will be helpful in further analyzing mini-batching and learning rate scheduling.
arXiv Detail & Related papers (2025-06-18T15:10:38Z) - Learning Optical Flow Field via Neural Ordinary Differential Equation [44.16275288019991]
Recent works on optical flow estimation use neural networks to predict the flow field that maps positions of one image to positions of the other.<n>We introduce a novel approach for predicting the derivative of the flow using a continuous model, namely neural ordinary differential equations (ODE)
arXiv Detail & Related papers (2025-06-03T18:30:14Z) - Sample as You Infer: Predictive Coding With Langevin Dynamics [11.515490109360012]
We present a novel algorithm for parameter learning in generic deep generative models.
Our approach modifies the standard PC algorithm to bring performance on-par and exceeding that obtained from standard variational auto-encoder training.
arXiv Detail & Related papers (2023-11-22T19:36:47Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled
Markov Chains [34.77971292478243]
The variational auto-encoder (VAE) is a deep latent variable model that has two neural networks in an autoencoder-like architecture.
We develop a training scheme for VAEs by introducing unbiased estimators of the log-likelihood gradient.
We show experimentally that VAEs fitted with unbiased estimators exhibit better predictive performance.
arXiv Detail & Related papers (2020-10-05T08:11:55Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.