CADD: Context aware disease deviations via restoration of brain images using normative conditional diffusion models
- URL: http://arxiv.org/abs/2508.03594v1
- Date: Tue, 05 Aug 2025 15:59:19 GMT
- Title: CADD: Context aware disease deviations via restoration of brain images using normative conditional diffusion models
- Authors: Ana Lawry Aguila, Ayodeji Ijishakin, Juan Eugenio Iglesias, Tomomi Takenaga, Yukihiro Nomura, Takeharu Yoshikawa, Osamu Abe, Shouhei Hanaoka,
- Abstract summary: We present CADD, the first conditional diffusion model for normative modeling in 3D images.<n>We propose a novel inference inpainting strategy which balances anomaly removal with retention of subject-specific features.
- Score: 1.3462324726960995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applying machine learning to real-world medical data, e.g. from hospital archives, has the potential to revolutionize disease detection in brain images. However, detecting pathology in such heterogeneous cohorts is a difficult challenge. Normative modeling, a form of unsupervised anomaly detection, offers a promising approach to studying such cohorts where the ``normal'' behavior is modeled and can be used at subject level to detect deviations relating to disease pathology. Diffusion models have emerged as powerful tools for anomaly detection due to their ability to capture complex data distributions and generate high-quality images. Their performance relies on image restoration; differences between the original and restored images highlight potential abnormalities. However, unlike normative models, these diffusion model approaches do not incorporate clinical information which provides important context to guide the disease detection process. Furthermore, standard approaches often poorly restore healthy regions, resulting in poor reconstructions and suboptimal detection performance. We present CADD, the first conditional diffusion model for normative modeling in 3D images. To guide the healthy restoration process, we propose a novel inference inpainting strategy which balances anomaly removal with retention of subject-specific features. Evaluated on three challenging datasets, including clinical scans, which may have lower contrast, thicker slices, and motion artifacts, CADD achieves state-of-the-art performance in detecting neurological abnormalities in heterogeneous cohorts.
Related papers
- Conditional diffusion models for guided anomaly detection in brain images using fluid-driven anomaly randomization [4.570902159763305]
We introduce a novel conditional diffusion model framework for anomaly detection and healthy image reconstruction in brain MRI.<n>Our weakly supervised approach integrates synthetically generated pseudo-pathology images into the modeling process to better guide the reconstruction of healthy images.<n>We evaluate our model's ability to detect pathology, using both synthetic anomaly datasets and real pathology from the ATLAS dataset.
arXiv Detail & Related papers (2025-06-11T23:27:00Z) - Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization [3.513196894656874]
We introduce UNA (Unraveling Normal Anatomy), the first modality-agnostic learning approach for normal brain anatomy reconstruction.<n>We propose a fluid-driven anomaly randomization method that generates an unlimited number of realistic pathology profiles on-the-fly.<n>We demonstrate UNA's effectiveness in reconstructing healthy brain anatomy and showcase its direct application to anomaly detection.
arXiv Detail & Related papers (2025-01-23T04:17:20Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Medical Images [32.99597899937902]
Anomaly detection in medical imaging plays a crucial role in identifying pathological regions across various imaging modalities.<n>We propose a novel unsupervised anomaly detection framework based on a diffusion model that incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.<n>We validate the proposed approach on brain MRI, liver CT, and carotid US datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models [13.970483987621135]
We propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images.<n>These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison.
arXiv Detail & Related papers (2024-06-02T15:19:07Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
We propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images.
The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions.
arXiv Detail & Related papers (2024-01-19T08:54:54Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.