論文の概要: Why Evolve When You Can Adapt? Post-Evolution Adaptation of Genetic Memory for On-the-Fly Control
- arxiv url: http://arxiv.org/abs/2508.03600v1
- Date: Tue, 05 Aug 2025 16:07:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.067285
- Title: Why Evolve When You Can Adapt? Post-Evolution Adaptation of Genetic Memory for On-the-Fly Control
- Title(参考訳): なぜ適応できるのか? オンザフライ制御のための遺伝記憶の進化後適応
- Authors: Hamze Hammami, Eva Denisa Barbulescu, Talal Shaikh, Mouayad Aldada, Muhammad Saad Munawar,
- Abstract要約: 本稿では,ジェネティック・アルゴリズム・コントローラとオンライン・ヘビアン・プラスティックを融合した,進化型ロボットのためのゼロショット適応機構を提案する。
生物学的システムにインスパイアされたこの方法は、学習と記憶を分離し、ジェノタイプが記憶として機能し、ヘビアンが学習を扱うように更新する。
光条件や障害物を変化させるT迷路ナビゲーションタスクにおいて,このハイブリッドGA-Hebbianコントローラをe-puckロボット上で検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imagine a robot controller with the ability to adapt like human synapses, dynamically rewiring itself to overcome unforeseen challenges in real time. This paper proposes a novel zero-shot adaptation mechanism for evolutionary robotics, merging a standard Genetic Algorithm (GA) controller with online Hebbian plasticity. Inspired by biological systems, the method separates learning and memory, with the genotype acting as memory and Hebbian updates handling learning. In our approach, the fitness function is leveraged as a live scaling factor for Hebbian learning, enabling the robot's neural controller to adjust synaptic weights on-the-fly without additional training. This adds a dynamic adaptive layer that activates only during runtime to handle unexpected environmental changes. After the task, the robot 'forgets' the temporary adjustments and reverts to the original weights, preserving core knowledge. We validate this hybrid GA-Hebbian controller on an e-puck robot in a T-maze navigation task with changing light conditions and obstacles.
- Abstract(参考訳): 人間のシナプスのように適応できるロボットコントローラーを想像してみてほしい。
本稿では,進化ロボットのための新しいゼロショット適応機構を提案し,標準の遺伝的アルゴリズム(GA)コントローラとオンラインのヘビアン可塑性を融合する。
生物学的システムにインスパイアされたこの方法は、学習と記憶を分離し、ジェノタイプが記憶として機能し、ヘビアンが学習を扱うように更新する。
本手法では,ロボットのニューラルコントローラが,追加のトレーニングを行なわずにシナプス重みを調整することができるように,フィットネス機能をヘビアン学習のライブスケーリングファクタとして活用する。
これにより動的アダプティブレイヤが追加され、実行時にのみアクティベートされ、予期せぬ環境変化を処理する。
タスクの後、ロボットは一時的な調整を「忘れ」、元の重みに戻してコア知識を保存する。
光条件や障害物を変化させるT迷路ナビゲーションタスクにおいて,このハイブリッドGA-Hebbianコントローラをe-puckロボット上で検証する。
関連論文リスト
- KungfuBot: Physics-Based Humanoid Whole-Body Control for Learning Highly-Dynamic Skills [50.34487144149439]
そこで本研究では,Kungfuやダンスなどの人体動作を高度に制御することを目的とした,物理学に基づくヒューマノイド制御フレームワークを提案する。
動作処理では,運動の抽出,フィルタリング,修正,再ターゲティングを行うパイプラインを設計し,物理的制約の遵守を確実にする。
動作模倣では、二段階最適化問題を定式化し、追従精度の許容度を動的に調整する。
実験では,高ダイナミックな動作のセットを模倣するために全身制御ポリシーを訓練する。
論文 参考訳(メタデータ) (2025-06-15T13:58:53Z) - Embodied Neuromorphic Control Applied on a 7-DOF Robotic Manipulator [10.642836177302533]
逆ダイナミクスは、ロボットシステムの関節空間からトルク空間にマップする基本的なロボット工学の問題である。
スパイキングニューラルネットワークを用いて、動作データの連続性を利用して制御精度を改善し、チューニングパラメータを除去する。
この研究は、概念実証から複雑な実世界のタスクへの応用への一歩前進によって、具体化されたニューロモルフィック制御を推し進める。
論文 参考訳(メタデータ) (2025-04-17T07:13:37Z) - Task and Domain Adaptive Reinforcement Learning for Robot Control [0.34137115855910755]
課題や環境条件に応じて動的にポリシーを適応する新しい適応エージェントを提案する。
このエージェントはIsaacGym上に作られたカスタムで高度に並列化されたシミュレータを使って訓練されている。
実世界において、さまざまな課題を解くために、飛行飛行のためにゼロショット転送を行う。
論文 参考訳(メタデータ) (2024-04-29T14:02:02Z) - Adapt On-the-Go: Behavior Modulation for Single-Life Robot Deployment [88.06408322210025]
展開中のシナリオにオンザフライで適応する問題について検討する。
ROAM(RObust Autonomous Modulation)は,事前学習した行動の知覚値に基づくメカニズムを提案する。
ROAMによりロボットはシミュレーションと実Go1の四足歩行の両方の動的変化に迅速に適応できることを示す。
論文 参考訳(メタデータ) (2023-11-02T08:22:28Z) - Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
モデル予測型と予測型強化型学習コントローラの組み合わせによりこれを実現できるかを検討する。
本研究では,両制御手法を組み合わせて,四足歩行ロボットの安定ゲート生成問題に対処する。
論文 参考訳(メタデータ) (2023-07-15T09:22:37Z) - Collective Intelligence for 2D Push Manipulations with Mobile Robots [30.48824211452278]
異なるソフトボディ物理シミュレータからアテンションベースのニューラルネットワークにプランナーを蒸留することにより、我々のマルチロボットプッシュ操作システムはベースラインよりも優れた性能を実現する。
また、トレーニング中に見えない構成に一般化し、外乱や環境変化を適用したときにタスク完了に適応することができる。
論文 参考訳(メタデータ) (2022-11-28T08:48:58Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z) - Meta-Learning through Hebbian Plasticity in Random Networks [12.433600693422235]
生涯学習と適応性は生物学的エージェントの2つの決定的な側面である。
この生物学的メカニズムに着想を得て,シナプス固有のヘビアン学習規則のみを探索する探索法を提案する。
完全にランダムな重みから始めると、発見されたヘビーンの規則により、エージェントは動的2Dピクセル環境をナビゲートできる。
論文 参考訳(メタデータ) (2020-07-06T14:32:31Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z) - Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning [65.88200578485316]
本稿では,ロボットが動的変化に迅速に適応できるメタ学習手法を提案する。
提案手法は高雑音環境における動的変化への適応性を著しく改善する。
我々は、動的に変化しながら歩くことを学習する四足歩行ロボットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2020-03-02T22:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。