Demystifying Sequential Recommendations: Counterfactual Explanations via Genetic Algorithms
- URL: http://arxiv.org/abs/2508.03606v1
- Date: Tue, 05 Aug 2025 16:22:45 GMT
- Title: Demystifying Sequential Recommendations: Counterfactual Explanations via Genetic Algorithms
- Authors: Domiziano Scarcelli, Filippo Betello, Giuseppe Perelli, Fabrizio Silvestri, Gabriele Tolomei,
- Abstract summary: Sequential Recommender Systems (SRSs) have demonstrated remarkable effectiveness in capturing users' evolving preferences.<n>Their inherent complexity as "black box" models poses significant challenges for explainability.<n>This work presents the first counterfactual explanation technique specifically developed for SRSs.
- Score: 7.24542420871739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sequential Recommender Systems (SRSs) have demonstrated remarkable effectiveness in capturing users' evolving preferences. However, their inherent complexity as "black box" models poses significant challenges for explainability. This work presents the first counterfactual explanation technique specifically developed for SRSs, introducing a novel approach in this space, addressing the key question: What minimal changes in a user's interaction history would lead to different recommendations? To achieve this, we introduce a specialized genetic algorithm tailored for discrete sequences and show that generating counterfactual explanations for sequential data is an NP-Complete problem. We evaluate these approaches across four experimental settings, varying between targeted-untargeted and categorized-uncategorized scenarios, to comprehensively assess their capability in generating meaningful explanations. Using three different datasets and three models, we are able to demonstrate that our methods successfully generate interpretable counterfactual explanation while maintaining model fidelity close to one. Our findings contribute to the growing field of Explainable AI by providing a framework for understanding sequential recommendation decisions through the lens of "what-if" scenarios, ultimately enhancing user trust and system transparency.
Related papers
- Counterfactual Explanations in Medical Imaging: Exploring SPN-Guided Latent Space Manipulation [2.9810923705287524]
In medical image analysis, deep learning models have demonstrated remarkable performance.<n>Deep generative models such as variational autoencoders (VAEs) exhibit significant generative power.<n>Probability models like sum-product networks (SPNs) efficiently represent complex joint probability distributions.
arXiv Detail & Related papers (2025-07-25T15:19:32Z) - Few-Shot, No Problem: Descriptive Continual Relation Extraction [27.296604792388646]
Few-shot Continual Relation Extraction is a crucial challenge for enabling AI systems to identify and adapt to evolving relationships in real-world domains.<n>Traditional memory-based approaches often overfit to limited samples, failing to reinforce old knowledge.<n>We propose a novel retrieval-based solution, starting with a large language model to generate descriptions for each relation.
arXiv Detail & Related papers (2025-02-27T23:44:30Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
Counterfactual explanations (CEs) have emerged as a viable solution for generating comprehensible explanations in XAI.
UFCE allows for the inclusion of user constraints to determine the smallest modifications in the subset of actionable features.
UFCE outperforms two well-known CE methods in terms of textitproximity, textitsparsity, and textitfeasibility.
arXiv Detail & Related papers (2024-02-26T20:09:44Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - From Intrinsic to Counterfactual: On the Explainability of
Contextualized Recommender Systems [43.93801836660617]
We show that by utilizing the contextual features (e.g., item reviews from users), we can design a series of explainable recommender systems.
We propose three types of explainable recommendation strategies with gradual change of model transparency: whitebox, graybox, and blackbox.
Our model achieves highly competitive ranking performance, and generates accurate and effective explanations in terms of numerous quantitative metrics and qualitative visualizations.
arXiv Detail & Related papers (2021-10-28T01:54:04Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.