Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model
- URL: http://arxiv.org/abs/2410.23994v2
- Date: Fri, 01 Nov 2024 07:55:34 GMT
- Title: Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model
- Authors: Wenjia Xie, Hao Wang, Luankang Zhang, Rui Zhou, Defu Lian, Enhong Chen,
- Abstract summary: Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
- Score: 66.91323540178739
- License:
- Abstract: Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior sequences. We revisit SR from a novel information-theoretic perspective and find that conventional sequential modeling methods fail to adequately capture the randomness and unpredictability of user behavior. Inspired by fuzzy information processing theory, this paper introduces the DDSR model, which uses fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests. Formally based on diffusion transition processes in discrete state spaces, which is unlike common diffusion models such as DDPM that operate in continuous domains. It is better suited for discrete data, using structured transitions instead of arbitrary noise introduction to avoid information loss. Additionally, to address the inefficiency of matrix transformations due to the vast discrete space, we use semantic labels derived from quantization or RQ-VAE to replace item IDs, enhancing efficiency and improving cold start issues. Testing on three public benchmark datasets shows that DDSR outperforms existing state-of-the-art methods in various settings, demonstrating its potential and effectiveness in handling SR tasks.
Related papers
- Generative Diffusion Models for Sequential Recommendations [7.948486055890262]
Generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have shown promise in sequential recommendation tasks.
This research introduces enhancements to the DiffuRec architecture to improve robustness and incorporates a cross-attention mechanism in the Approximator to better capture relevant user-item interactions.
arXiv Detail & Related papers (2024-10-25T09:39:05Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
We introduce the Schr"odinger Bridge into diffusion-based sequential recommendation models, creating the SdifRec model.
We also propose an extended version of SdifRec called con-SdifRec, which utilizes user clustering information as a guiding condition.
arXiv Detail & Related papers (2024-08-30T09:10:38Z) - Classification of High-dimensional Time Series in Spectral Domain using Explainable Features [8.656881800897661]
We propose a model-based approach for classifying high-dimensional stationary time series.
Our approach emphasizes the interpretability of model parameters, making it especially suitable for fields like neuroscience.
The novelty of our method lies in the interpretability of the model parameters, addressing critical needs in neuroscience.
arXiv Detail & Related papers (2024-08-15T19:10:12Z) - Aligning Diffusion Behaviors with Q-functions for Efficient Continuous Control [25.219524290912048]
We formulate offline Reinforcement Learning as a two-stage optimization problem.
First, we pretrain expressive generative policies on reward-free behavior datasets, then fine-tune these policies to align with task-specific annotations like Q-values.
This strategy allows us to leverage abundant and diverse behavior data to enhance generalization and enable rapid adaptation to downstream tasks using minimal annotations.
arXiv Detail & Related papers (2024-07-12T06:32:36Z) - Diffusion Augmentation for Sequential Recommendation [47.43402785097255]
We propose a Diffusion Augmentation for Sequential Recommendation (DiffuASR) for a higher quality generation.
The augmented dataset by DiffuASR can be used to train the sequential recommendation models directly, free from complex training procedures.
We conduct extensive experiments on three real-world datasets with three sequential recommendation models.
arXiv Detail & Related papers (2023-09-22T13:31:34Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - iSAGE: An Incremental Version of SAGE for Online Explanation on Data
Streams [8.49072000414555]
iSAGE is a time- and memory-efficient incrementalization of SAGE.
We show that iSAGE adheres to similar theoretical properties as SAGE.
arXiv Detail & Related papers (2023-03-02T11:51:54Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Modeling Sequences as Distributions with Uncertainty for Sequential
Recommendation [63.77513071533095]
Most existing sequential methods assume users are deterministic.
Item-item transitions might fluctuate significantly in several item aspects and exhibit randomness of user interests.
We propose a Distribution-based Transformer Sequential Recommendation (DT4SR) which injects uncertainties into sequential modeling.
arXiv Detail & Related papers (2021-06-11T04:35:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.