Likelihood Matching for Diffusion Models
- URL: http://arxiv.org/abs/2508.03636v1
- Date: Tue, 05 Aug 2025 16:51:29 GMT
- Title: Likelihood Matching for Diffusion Models
- Authors: Lei Qian, Wu Su, Yanqi Huang, Song Xi Chen,
- Abstract summary: We propose a Likelihood Matching approach for training diffusion models.<n>A quasi-likelihood is considered to approximate each reverse transition density by a Gaussian distribution.<n>A sampler is introduced to facilitate computation that leverages on both the estimated score and Hessian information.
- Score: 2.17741936620649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a Likelihood Matching approach for training diffusion models by first establishing an equivalence between the likelihood of the target data distribution and a likelihood along the sample path of the reverse diffusion. To efficiently compute the reverse sample likelihood, a quasi-likelihood is considered to approximate each reverse transition density by a Gaussian distribution with matched conditional mean and covariance, respectively. The score and Hessian functions for the diffusion generation are estimated by maximizing the quasi-likelihood, ensuring a consistent matching of both the first two transitional moments between every two time points. A stochastic sampler is introduced to facilitate computation that leverages on both the estimated score and Hessian information. We establish consistency of the quasi-maximum likelihood estimation, and provide non-asymptotic convergence guarantees for the proposed sampler, quantifying the rates of the approximation errors due to the score and Hessian estimation, dimensionality, and the number of diffusion steps. Empirical and simulation evaluations demonstrate the effectiveness of the proposed Likelihood Matching and validate the theoretical results.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Discriminative Estimation of Total Variation Distance: A Fidelity Auditor for Generative Data [10.678533056953784]
We propose a discriminative approach to estimate the total variation (TV) distance between two distributions.
Our method quantitatively characterizes the relation between the Bayes risk in classifying two distributions and their TV distance.
We demonstrate that, with a specific choice of hypothesis class in classification, a fast convergence rate in estimating the TV distance can be achieved.
arXiv Detail & Related papers (2024-05-24T08:18:09Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.<n>Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.<n>This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Estimating Joint Probability Distribution With Low-Rank Tensor
Decomposition, Radon Transforms and Dictionaries [3.0892724364965005]
We describe a method for estimating the joint probability density from data samples by assuming that the underlying distribution can be decomposed as a mixture of product densities with few mixture components.
We combine two key ideas: dictionaries to represent 1-D densities, and random projections to estimate the joint distribution from 1-D marginals.
Our algorithm benefits from improved sample complexity over the previous dictionary-based approach by using 1-D marginals for reconstruction.
arXiv Detail & Related papers (2023-04-18T05:37:15Z) - Communication-Efficient Distributed Estimation and Inference for Cox's Model [4.731404257629232]
We develop communication-efficient iterative distributed algorithms for estimation and inference in the high-dimensional sparse Cox proportional hazards model.
To construct confidence intervals for linear combinations of high-dimensional hazard regression coefficients, we introduce a novel debiased method.
We provide valid and powerful distributed hypothesis tests for any coordinate element based on a decorrelated score test.
arXiv Detail & Related papers (2023-02-23T15:50:17Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
This paper proposes using a sparse-structured multivariate Gaussian to provide a closed-form approxorimator for dense image prediction tasks.
We capture the uncertainty and structured correlations in the predictions explicitly in a formal distribution, rather than implicitly through sampling alone.
We demonstrate the merits of our approach on monocular depth estimation and show that the advantages of our approach are obtained with comparable quantitative performance.
arXiv Detail & Related papers (2022-03-29T12:34:43Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.