Outlier Detection Algorithm for Circle Fitting
- URL: http://arxiv.org/abs/2508.03720v1
- Date: Mon, 28 Jul 2025 10:53:27 GMT
- Title: Outlier Detection Algorithm for Circle Fitting
- Authors: Ahmet Gökhan Poyraz,
- Abstract summary: This study introduces the Polar Coordinate-Based Outlier Detection (PCOD) algorithm, which can be effectively employed in circle fitting applications.<n>The practicality and efficiency of the proposed method are demonstrated by focusing on the high-precision diameter measurement of industrial washer parts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Circle fitting methods are extensively utilized in various industries, particularly in quality control processes and design applications. The effectiveness of these algorithms can be significantly compromised when the point sets to be predicted are noisy. To mitigate this issue, outlier detection and removal algorithms are often applied before the circle fitting procedure. This study introduces the Polar Coordinate-Based Outlier Detection (PCOD) algorithm, which can be effectively employed in circle fitting applications. In the proposed approach, the point set is first transformed into polar coordinates, followed by the calculation of both local and global standard deviations. Outliers are then identified by comparing local mean values with the global standard deviation. The practicality and efficiency of the proposed method are demonstrated by focusing on the high-precision diameter measurement of industrial washer parts. Images from a machine vision system are processed through preprocessing steps, including sub-pixel edge detection. The resulting sub-pixel edge points are then cleaned using the proposed outlier detection and removal algorithm, after which circle fitting is performed. A comparison is made using ten different circle fitting algorithms and five distinct outlier detection methods. The results indicate that the proposed method outperforms the other approaches, delivering the best performance in terms of accuracy within the dataset, thereby demonstrating its potential for enhancing circle fitting applications in industrial environments.
Related papers
- Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls [65.44462297594308]
Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data.<n>Most unsupervised outlier detection methods are carefully designed to detect specified outliers.<n>We propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers.
arXiv Detail & Related papers (2025-01-06T12:35:51Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - Weighted Circle Fusion: Ensembling Circle Representation from Different Object Detection Results [9.146903293797552]
Circle representation has emerged as a method to improve the identification of spherical objects in medical imaging studies.<n>Weighted Circle Fusion (WCF) is a simple approach for merging predictions from various circle detection models.<n>We evaluate our method on a proprietary dataset for glomerular detection in whole slide imaging (WSI) and find a performance gain of 5%.
arXiv Detail & Related papers (2024-06-27T21:34:51Z) - Outlier-Insensitive Kalman Filtering: Theory and Applications [26.889182816155838]
We propose a parameter-free algorithm which mitigates harmful effect of outliers while requiring only a short iterative process of the standard update step of the linear Kalman filter.
arXiv Detail & Related papers (2023-09-18T06:33:28Z) - Towards Large Certified Radius in Randomized Smoothing using
Quasiconcave Optimization [3.5133481941064164]
In this work, we show that by exploiting a quasi fixed problem structure, we can find the optimal certified radii for most data points with slight computational overhead.
This leads to an efficient and effective input-specific randomized smoothing algorithm.
arXiv Detail & Related papers (2023-02-01T03:25:43Z) - CoMadOut -- A Robust Outlier Detection Algorithm based on CoMAD [0.3749861135832073]
Outliers play a significant role, since they bear the potential to distort the predictions of a machine learning algorithm on a given dataset.
To address this problem, we propose the robust outlier detection algorithm CoMadOut.
Our approach can be seen as a robust alternative for outlier detection tasks.
arXiv Detail & Related papers (2022-11-23T21:33:34Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Copy-Move Image Forgery Detection Based on Evolving Circular Domains
Coverage [5.716030416222748]
The proposed scheme integrates both block-based and keypoint-based forgery detection methods.
The experimental results indicate that the proposed CMFD scheme can achieve better detection performance under various attacks.
arXiv Detail & Related papers (2021-09-09T16:08:03Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.