Outlier-Insensitive Kalman Filtering: Theory and Applications
- URL: http://arxiv.org/abs/2309.09505v3
- Date: Sun, 25 Aug 2024 21:59:43 GMT
- Title: Outlier-Insensitive Kalman Filtering: Theory and Applications
- Authors: Shunit Truzman, Guy Revach, Nir Shlezinger, Itzik Klein,
- Abstract summary: We propose a parameter-free algorithm which mitigates harmful effect of outliers while requiring only a short iterative process of the standard update step of the linear Kalman filter.
- Score: 26.889182816155838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State estimation of dynamical systems from noisy observations is a fundamental task in many applications. It is commonly addressed using the linear Kalman filter (KF), whose performance can significantly degrade in the presence of outliers in the observations, due to the sensitivity of its convex quadratic objective function. To mitigate such behavior, outlier detection algorithms can be applied. In this work, we propose a parameter-free algorithm which mitigates the harmful effect of outliers while requiring only a short iterative process of the standard update step of the KF. To that end, we model each potential outlier as a normal process with unknown variance and apply online estimation through either expectation maximization or alternating maximization algorithms. Simulations and field experiment evaluations demonstrate competitive performance of our method, showcasing its robustness to outliers in filtering scenarios compared to alternative algorithms.
Related papers
- Robust Gaussian Processes via Relevance Pursuit [17.39376866275623]
We propose and study a GP model that achieves robustness against sparse outliers by inferring data-point-specific noise levels.
We show, surprisingly, that the model can be parameterized such that the associated log marginal likelihood is strongly concave in the data-point-specific noise variances.
arXiv Detail & Related papers (2024-10-31T17:59:56Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration.
Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks.
arXiv Detail & Related papers (2024-02-22T13:22:06Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous
Unobserved Confounders [16.193776814471768]
We study robust policy evaluation and policy optimization in the presence of sequentially-exogenous unobserved confounders.
We provide sample complexity bounds, insights, and show effectiveness both in simulations and on real-world longitudinal healthcare data of treating sepsis.
arXiv Detail & Related papers (2023-02-01T18:40:53Z) - Outlier-Insensitive Kalman Filtering Using NUV Priors [24.413595920205907]
In practice, observations are corrupted by outliers, severely impairing the Kalman filter (KF)s performance.
In this work, an outlier-insensitive KF is proposed, where is achieved by modeling each potential outlier as a normally distributed random variable with unknown variance (NUV)
The NUVs variances are estimated online, using both expectation-maximization (EM) and alternating robustness (AM)
arXiv Detail & Related papers (2022-10-12T11:00:13Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic
Convex Optimization [4.970364068620608]
We exploit convexity and L-smoothness to improve the noisy estimates outputted by the gradient oracle.
We show that increasing the number and proximity of the queried points leads to better gradient estimates.
We also apply COCO in vanilla settings by plugging it in existing algorithms, such as SGD, Adam or STRSAGA.
arXiv Detail & Related papers (2021-09-07T17:21:09Z) - KaFiStO: A Kalman Filtering Framework for Stochastic Optimization [27.64040983559736]
We show that when training neural networks the loss function changes over (iteration) time due to the randomized selection of a subset of the samples.
This randomization turns the optimization problem into an optimum one.
We propose to consider the loss as a noisy observation with respect to some reference.
arXiv Detail & Related papers (2021-07-07T16:13:57Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.