Improve Retinal Artery/Vein Classification via Channel Couplin
- URL: http://arxiv.org/abs/2508.03738v1
- Date: Thu, 31 Jul 2025 18:43:02 GMT
- Title: Improve Retinal Artery/Vein Classification via Channel Couplin
- Authors: Shuang Zeng, Chee Hong Lee, Kaiwen Li, Boxu Xie, Ourui Fu, Hangzhou He, Lei Zhu, Yanye Lu, Fangxiao Cheng,
- Abstract summary: We propose a novel loss named Channel-Coupled Vessel Consistency Loss to enforce the coherence and consistency between vessel, artery and vein predictions.<n>We also introduce a regularization term named intra-image pixel-level contrastive loss to extract more discriminative feature-level fine-grained representations.<n>SOTA results have been achieved across three public A/V classification datasets including RITE, LES-AV and HRF.
- Score: 12.219907282789285
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retinal vessel segmentation plays a vital role in analyzing fundus images for the diagnosis of systemic and ocular diseases. Building on this, classifying segmented vessels into arteries and veins (A/V) further enables the extraction of clinically relevant features such as vessel width, diameter and tortuosity, which are essential for detecting conditions like diabetic and hypertensive retinopathy. However, manual segmentation and classification are time-consuming, costly and inconsistent. With the advancement of Convolutional Neural Networks, several automated methods have been proposed to address this challenge, but there are still some issues. For example, the existing methods all treat artery, vein and overall vessel segmentation as three separate binary tasks, neglecting the intrinsic coupling relationships between these anatomical structures. Considering artery and vein structures are subsets of the overall retinal vessel map and should naturally exhibit prediction consistency with it, we design a novel loss named Channel-Coupled Vessel Consistency Loss to enforce the coherence and consistency between vessel, artery and vein predictions, avoiding biasing the network toward three simple binary segmentation tasks. Moreover, we also introduce a regularization term named intra-image pixel-level contrastive loss to extract more discriminative feature-level fine-grained representations for accurate retinal A/V classification. SOTA results have been achieved across three public A/V classification datasets including RITE, LES-AV and HRF. Our code will be available upon acceptance.
Related papers
- A topology-preserving three-stage framework for fully-connected coronary artery extraction [39.47027832777158]
Coronary artery extraction is a crucial prerequisite for computer-aided diagnosis of coronary artery disease.<n>We propose a topology-preserving three-stage framework for fully-connected coronary artery extraction.<n>This framework includes vessel segmentation, centerline reconnection, and missing vessel reconstruction.
arXiv Detail & Related papers (2025-04-02T11:04:44Z) - Multi-task learning for joint weakly-supervised segmentation and aortic
arch anomaly classification in fetal cardiac MRI [2.7962860265843563]
We present a framework for automated fetal vessel segmentation from 3D black blood T2w MRI and anomaly classification.
We target 11 cardiac vessels and three distinct aortic arch anomalies, including double aortic arch, right aortic arch, and suspected coarctation of the aorta.
Our results showcase that our proposed training strategy significantly outperforms label propagation and a network trained exclusively on propagated labels.
arXiv Detail & Related papers (2023-11-13T10:54:53Z) - Morphology Edge Attention Network and Optimal Geometric Matching
Connection model for vascular segmentation [3.6368619769561668]
We propose a novel Morphology Edge Attention Network (MEA-Net) for the segmentation of vessel-like structures.
We also present an Optimal Geometric Matching Connection (OGMC) model to connect the broken vessel segments.
Our method achieves superior or competitive results compared to state-of-the-art methods on four datasets of 3D vascular segmentation tasks.
arXiv Detail & Related papers (2023-06-02T01:52:35Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Simultaneous segmentation and classification of the retinal arteries and
veins from color fundus images [6.027522272446452]
The study of the retinal vasculature is a fundamental stage in the screening and diagnosis of many diseases.
We propose a novel approach for the simultaneous segmentation and classification of the retinal A/V from eye fundus images.
arXiv Detail & Related papers (2022-09-20T09:54:01Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Learning to Address Intra-segment Misclassification in Retinal Imaging [3.552155712390612]
We propose a new approach that decomposes multi-class segmentation into multiple binary, followed by a binary-to-multi-class fusion network.
The network merges representations of artery, vein, and multi-class feature maps, each of which are supervised by expert vessel annotation in adversarial training.
The results show that, our model respectively improves F1-score by 4.4%, 5.1%, and 4.2% compared with three state-of-the-art deep learning based methods on DRIVE-AV, LES-AV, and HRF-AV data sets.
arXiv Detail & Related papers (2021-04-25T11:57:26Z) - Grading the Severity of Arteriolosclerosis from Retinal Arterio-venous
Crossing Patterns [27.867833878756553]
The status of retinal arteriovenous crossing is of great significance for clinical evaluation of arteriolosclerosis and systemic hypertension.
We propose a deep learning approach to support the diagnosis process, which is one of the earliest attempts in medical imaging.
arXiv Detail & Related papers (2020-11-07T13:15:17Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.