Learning to Address Intra-segment Misclassification in Retinal Imaging
- URL: http://arxiv.org/abs/2104.12138v1
- Date: Sun, 25 Apr 2021 11:57:26 GMT
- Title: Learning to Address Intra-segment Misclassification in Retinal Imaging
- Authors: Yukun Zhou, Moucheng Xu, Yipeng Hu, Hongxiang Lin, Joseph Jacob,
Pearse Keane, Daniel Alexander
- Abstract summary: We propose a new approach that decomposes multi-class segmentation into multiple binary, followed by a binary-to-multi-class fusion network.
The network merges representations of artery, vein, and multi-class feature maps, each of which are supervised by expert vessel annotation in adversarial training.
The results show that, our model respectively improves F1-score by 4.4%, 5.1%, and 4.2% compared with three state-of-the-art deep learning based methods on DRIVE-AV, LES-AV, and HRF-AV data sets.
- Score: 3.552155712390612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate multi-class segmentation is a long-standing challenge in medical
imaging, especially in scenarios where classes share strong similarity.
Segmenting retinal blood vessels in retinal photographs is one such scenario,
in which arteries and veins need to be identified and differentiated from each
other and from the background. Intra-segment misclassification, i.e. veins
classified as arteries or vice versa, frequently occurs when arteries and veins
intersect, whereas in binary retinal vessel segmentation, error rates are much
lower. We thus propose a new approach that decomposes multi-class segmentation
into multiple binary, followed by a binary-to-multi-class fusion network. The
network merges representations of artery, vein, and multi-class feature maps,
each of which are supervised by expert vessel annotation in adversarial
training. A skip-connection based merging process explicitly maintains
class-specific gradients to avoid gradient vanishing in deep layers, to favor
the discriminative features. The results show that, our model respectively
improves F1-score by 4.4\%, 5.1\%, and 4.2\% compared with three
state-of-the-art deep learning based methods on DRIVE-AV, LES-AV, and HRF-AV
data sets.
Related papers
- Multi-task learning for joint weakly-supervised segmentation and aortic
arch anomaly classification in fetal cardiac MRI [2.7962860265843563]
We present a framework for automated fetal vessel segmentation from 3D black blood T2w MRI and anomaly classification.
We target 11 cardiac vessels and three distinct aortic arch anomalies, including double aortic arch, right aortic arch, and suspected coarctation of the aorta.
Our results showcase that our proposed training strategy significantly outperforms label propagation and a network trained exclusively on propagated labels.
arXiv Detail & Related papers (2023-11-13T10:54:53Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
We propose a contrastive variational auto-encoder that can filter out irrelevant features and synthesize a latent image, named deep angiogram.
The generalizability of the synthetic network is improved by the contrastive loss that makes the model less sensitive to variations of image contrast and noisy features.
arXiv Detail & Related papers (2023-07-01T06:13:10Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Simultaneous segmentation and classification of the retinal arteries and
veins from color fundus images [6.027522272446452]
The study of the retinal vasculature is a fundamental stage in the screening and diagnosis of many diseases.
We propose a novel approach for the simultaneous segmentation and classification of the retinal A/V from eye fundus images.
arXiv Detail & Related papers (2022-09-20T09:54:01Z) - Edge-competing Pathological Liver Vessel Segmentation with Limited
Labels [61.38846803229023]
There is no algorithm as yet tailored for the MVI detection from pathological images.
This paper collects the first pathological liver image dataset containing 522 whole slide images with labels of vessels, MVI, and carcinoma grades.
We propose an Edge-competing Vessel Network (EVS-Net) which contains a segmentation network and two edge segmentation discriminators.
arXiv Detail & Related papers (2021-08-01T07:28:32Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
We propose a vessel-mixing based consistency regularization framework, for cross-domain learning in retinal A/V classification.
Our method achieves the state-of-the-art cross-domain performance, which is also close to the upper bound obtained by fully supervised learning on target domain.
arXiv Detail & Related papers (2021-03-16T14:18:35Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - Joint Learning of Vessel Segmentation and Artery/Vein Classification
with Post-processing [27.825969553813092]
Vessel segmentation and artery/vein classification provide various information on potential disorders.
We adopt a UNet-based model, SeqNet, to accurately segment vessels from the background and make prediction on the vessel type.
Our experiments show that our method improves AUC to 0.98 for segmentation and the accuracy to 0.92 in classification over DRIVE dataset.
arXiv Detail & Related papers (2020-05-27T13:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.