論文の概要: VQ-DeepISC: Vector Quantized-Enabled Digital Semantic Communication with Channel Adaptive Image Transmission
- arxiv url: http://arxiv.org/abs/2508.03740v1
- Date: Fri, 01 Aug 2025 02:35:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.353426
- Title: VQ-DeepISC: Vector Quantized-Enabled Digital Semantic Communication with Channel Adaptive Image Transmission
- Title(参考訳): VQ-DeepISC:チャネル適応画像伝送を用いたベクトル量子化可能ディジタルセマンティック通信
- Authors: Jianqiao Chen, Tingting Zhu, Huishi Song, Nan Ma, Xiaodong Xu,
- Abstract要約: 意味的特徴の離散化は、意味的コミュニケーションシステムとデジタルコミュニケーションシステムの相互運用を可能にする。
チャネル適応画像伝送を用いたベクトル量子化(VQ)対応ディジタルセマンティック通信システムを提案する。
- 参考スコア(独自算出の注目度): 8.858565507331395
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Discretization of semantic features enables interoperability between semantic and digital communication systems, showing significant potential for practical applications. The fundamental difficulty in digitizing semantic features stems from the need to preserve continuity and context in inherently analog representations during their compression into discrete symbols while ensuring robustness to channel degradation. In this paper, we propose a vector quantized (VQ)-enabled digital semantic communication system with channel adaptive image transmission, named VQ-DeepISC. Guided by deep joint source-channel coding (DJSCC), we first design a Swin Transformer backbone for hierarchical semantic feature extraction, followed by VQ modules projecting features into discrete latent spaces. Consequently, it enables efficient index-based transmission instead of raw feature transmission. To further optimize this process, we develop an attention mechanism-driven channel adaptation module to dynamically optimize index transmission. Secondly, to counteract codebook collapse during training process, we impose a distributional regularization by minimizing the Kullback-Leibler divergence (KLD) between codeword usage frequencies and a uniform prior. Meanwhile, exponential moving average (EMA) is employed to stabilize training and ensure balanced feature coverage during codebook updates. Finally, digital communication is implemented using quadrature phase shift keying (QPSK) modulation alongside orthogonal frequency division multiplexing (OFDM), adhering to the IEEE 802.11a standard. Experimental results demonstrate superior reconstruction fidelity of the proposed system over benchmark methods.
- Abstract(参考訳): 意味的特徴の離散化はセマンティック通信システムとデジタル通信システムの相互運用を可能にし、実用的な応用の可能性を示す。
意味的特徴のデジタル化の根本的な難しさは、連続性と文脈を本質的にアナログ表現で保存し、個別のシンボルに圧縮すると同時に、チャネル劣化に対する堅牢性を確保することにある。
本稿では,VQ-DeepISCという名前のチャネル適応画像伝送を用いたベクトル量子化(VQ)対応ディジタルセマンティック通信システムを提案する。
まず階層的な意味的特徴抽出のためのSwin Transformerのバックボーンを設計し,次にVQモジュールが特徴を離散潜在空間に投影する。
これにより、生の特徴伝達の代わりに効率的なインデックスベースの伝送が可能となる。
このプロセスをさらに最適化するために、インデックス送信を動的に最適化するアテンション機構駆動のチャネル適応モジュールを開発した。
第2に,学習過程におけるコードブックの崩壊に対処するために,コードワード使用頻度と均一前のKLDを最小化することにより,分布正則化を課す。
一方、指数移動平均(EMA)は、トレーニングを安定させ、コードブック更新中にバランスの取れた機能カバレッジを確保するために使用される。
最後に、IEEE 802.11a標準に準拠した直交周波数分割多重化(OFDM)と共に、QPSK変調を用いてデジタル通信を行う。
実験により,提案方式の再現性はベンチマーク法よりも優れていた。
関連論文リスト
- Modeling and Performance Analysis for Semantic Communications Based on Empirical Results [53.805458017074294]
終端計測とSNRの関係をモデル化するためのAlpha-Beta-Gamma (ABG) 式を提案する。
画像再構成タスクでは、提案されたABG公式は、SCUNetやVision Transformerといった一般的なDLネットワークに適合する。
我々の知る限りでは、これはエンドツーエンドのパフォーマンス指標と意味コミュニケーションのためのSNRの間の最初の理論的表現である。
論文 参考訳(メタデータ) (2025-04-29T06:07:50Z) - Vision Transformer-based Semantic Communications With Importance-Aware Quantization [13.328970689723096]
本稿では、無線画像伝送のための重要量化(IAQ)を用いた視覚変換器(ViT)に基づくセマンティック通信システムを提案する。
筆者らのIAQフレームワークは, エラーのない, 現実的な通信シナリオにおいて, 従来の画像圧縮手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-12-08T19:24:47Z) - VQ-CTAP: Cross-Modal Fine-Grained Sequence Representation Learning for Speech Processing [81.32613443072441]
テキスト音声(TTS)、音声変換(VC)、自動音声認識(ASR)などのタスクでは、クロスモーダルな粒度(フレームレベル)シーケンス表現が望まれる。
本稿では,テキストと音声を共同空間に組み込むために,クロスモーダルシーケンストランスコーダを用いた量子コントラスト・トーケン・音響事前学習(VQ-CTAP)手法を提案する。
論文 参考訳(メタデータ) (2024-08-11T12:24:23Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [66.63250537475973]
本稿では,帯域制限付き生成モデルのための,高度なVAEベースの圧縮を用いた拡散駆動型セマンティック通信フレームワークを提案する。
実験の結果,ピーク信号対雑音比 (PSNR) などの画素レベルの指標と,LPIPS (Learning Perceptual Image patch similarity) のような意味的指標が大幅に改善された。
論文 参考訳(メタデータ) (2024-07-26T02:34:25Z) - MOC-RVQ: Multilevel Codebook-Assisted Digital Generative Semantic Communication [43.17888320268593]
本稿では,2段階の学習フレームワークを用いた多段階生成セマンティックコミュニケーションシステムを提案する。
最初の段階では,マルチヘッドオクタナリーコードブックを用いて高品質なコードブックを訓練し,インデックス範囲を圧縮する。
第2段階では、Swin Transformerに基づくノイズ低減ブロック(NRB)が導入され、高品質なセマンティック知識ベースとして機能する。
論文 参考訳(メタデータ) (2024-01-02T16:17:43Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Vector Quantized Semantic Communication System [22.579525825992416]
我々は,VQ-DeepSCという画像伝送のための深層学習可能なベクトル量子化(VQ)セマンティック通信システムを開発した。
具体的には、画像のマルチスケールな意味的特徴を抽出し、マルチスケールな意味的埋め込み空間を導入するCNNベースのトランシーバを提案する。
我々は、PatchGAN識別器を導入して、受信画像の品質を向上させるために、敵対訓練を実践する。
論文 参考訳(メタデータ) (2022-09-23T10:58:23Z) - DeepJSCC-Q: Constellation Constrained Deep Joint Source-Channel Coding [6.55705721360334]
我々は、DeepJSCC-Qが、複雑な値のチャネル入力を可能にする以前の作業と同じような性能を実現できることを示す。
DeepJSCC-Qは予測不能なチャネル条件下での画質の優雅な劣化を保っている。
論文 参考訳(メタデータ) (2022-06-16T11:43:50Z) - Nonlinear Transform Source-Channel Coding for Semantic Communications [7.81628437543759]
本稿では,非線形変換の下での音源分布に密に適応できる,高効率なディープジョイントソースチャネル符号化法を提案する。
本モデルでは, 非線形変換を強みとして組み込んで, 音源のセマンティックな特徴を効果的に抽出する。
特に、NTSCC法は、その活発なコンテンツ認識能力のために、将来的なセマンティックコミュニケーションをサポートする可能性がある。
論文 参考訳(メタデータ) (2021-12-21T03:30:46Z) - Volumetric Transformer Networks [88.85542905676712]
学習可能なモジュールである容積変換器ネットワーク(VTN)を導入する。
VTNは、中間CNNの空間的およびチャネル的特徴を再設定するために、チャネル回りの歪み場を予測する。
実験の結果,VTNは特徴量の表現力を一貫して向上し,細粒度画像認識とインスタンスレベルの画像検索におけるネットワークの精度が向上することがわかった。
論文 参考訳(メタデータ) (2020-07-18T14:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。