Tobler's First Law in GeoAI: A Spatially Explicit Deep Learning Model for Terrain Feature Detection Under Weak Supervision
- URL: http://arxiv.org/abs/2508.03745v1
- Date: Fri, 01 Aug 2025 21:47:50 GMT
- Title: Tobler's First Law in GeoAI: A Spatially Explicit Deep Learning Model for Terrain Feature Detection Under Weak Supervision
- Authors: Wenwen Li, Chia-Yu Hsu, Maosheng Hu,
- Abstract summary: This paper reports our work in developing a deep learning model that enables object detection in a weakly supervised manner.<n>The model generalizes to both natural and human-made features on the surfaces of Earth and other planets.
- Score: 2.083046809527675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent interest in geospatial artificial intelligence (GeoAI) has fostered a wide range of applications using artificial intelligence (AI), especially deep learning, for geospatial problem solving. However, major challenges such as a lack of training data and the neglect of spatial principles and spatial effects in AI model design remain, significantly hindering the in-depth integration of AI with geospatial research. This paper reports our work in developing a deep learning model that enables object detection, particularly of natural features, in a weakly supervised manner. Our work makes three contributions: First, we present a method of object detection using only weak labels. This is achieved by developing a spatially explicit model based on Tobler's first law of geography. Second, we incorporate attention maps into the object detection pipeline and develop a multistage training strategy to improve performance. Third, we apply this model to detect impact craters on Mars, a task that previously required extensive manual effort. The model generalizes to both natural and human-made features on the surfaces of Earth and other planets. This research advances the theoretical and methodological foundations of GeoAI.
Related papers
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - Synthetic Geology -- Structural Geology Meets Deep Learning [3.216132991084434]
Building on techniques of generative artificial intelligence applied to voxelated images, we demonstrate a method that extends surface geological data to a three-dimensional subsurface region by training a neural network.<n>We close this data gap in the development of subsurface deep learning by designing a synthetic data-generator process that mimics eons of geological activity.<n>A foundation model trained on such synthetic data is able to generate a 3D image of the subsurface from a previously unseen map of surface topography and geology.
arXiv Detail & Related papers (2025-06-11T20:42:28Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.<n>We propose a MLLM (OmniGeo) tailored to geospatial applications.<n>By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface.<n>Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding.<n>To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding.
arXiv Detail & Related papers (2025-01-10T18:59:42Z) - Self-Supervised Representation Learning for Geospatial Objects: A Survey [21.504978593542354]
Self-supervised learning (SSL) has garnered increasing attention for its ability to learn effective and generalizable representations directly from data without extensive labeled supervision.<n>This paper presents a survey of SSL techniques specifically applied to or developed for geospatial objects in three primary geometric vector types: Point, Polyline, and Polygon.<n>We examine the emerging trends in SSL for geospatial objects, particularly the gradual advancements towards geospatial foundation models.
arXiv Detail & Related papers (2024-08-22T05:28:22Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping.
A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated.
Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions.
arXiv Detail & Related papers (2023-09-25T19:50:47Z) - On the Opportunities and Challenges of Foundation Models for Geospatial
Artificial Intelligence [39.86997089245117]
Foundations models (FMs) can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or zero-shot learning.
We propose that one of the major challenges of developing a FM for GeoAI is to address the multimodality nature of geospatial tasks.
arXiv Detail & Related papers (2023-04-13T19:50:17Z) - Explainable GeoAI: Can saliency maps help interpret artificial
intelligence's learning process? An empirical study on natural feature
detection [4.52308938611108]
This paper compares popular saliency map generation techniques and their strengths and weaknesses in interpreting GeoAI and deep learning models' reasoning behaviors.
The experiments used two GeoAI-ready datasets to demonstrate the generalizability of the research findings.
arXiv Detail & Related papers (2023-03-16T21:37:29Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
We propose a novel paradigm for building highly effective foundation models with minimal resource cost and carbon impact.
We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile.
Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm.
arXiv Detail & Related papers (2023-02-09T07:39:02Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
Batch Exploration with Examples (BEE) explores relevant regions of the state-space guided by a modest number of human provided images of important states.
BEE is able to tackle challenging vision-based manipulation tasks both in simulation and on a real Franka robot.
arXiv Detail & Related papers (2020-10-22T17:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.