M$^3$HL: Mutual Mask Mix with High-Low Level Feature Consistency for Semi-Supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2508.03752v1
- Date: Mon, 04 Aug 2025 05:42:10 GMT
- Title: M$^3$HL: Mutual Mask Mix with High-Low Level Feature Consistency for Semi-Supervised Medical Image Segmentation
- Authors: Yajun Liu, Zenghui Zhang, Jiang Yue, Weiwei Guo, Dongying Li,
- Abstract summary: We propose a novel method called Mutual Mask Mix with High-Low level feature consistency (M$3$HL) to address the aforementioned challenges.<n>Our method achieves state-of-the-art performance on widely adopted medical image segmentation benchmarks including the ACDC and LA datasets.
- Score: 10.42922059959177
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data augmentation methods inspired by CutMix have demonstrated significant potential in recent semi-supervised medical image segmentation tasks. However, these approaches often apply CutMix operations in a rigid and inflexible manner, while paying insufficient attention to feature-level consistency constraints. In this paper, we propose a novel method called Mutual Mask Mix with High-Low level feature consistency (M$^3$HL) to address the aforementioned challenges, which consists of two key components: 1) M$^3$: An enhanced data augmentation operation inspired by the masking strategy from Masked Image Modeling (MIM), which advances conventional CutMix through dynamically adjustable masks to generate spatially complementary image pairs for collaborative training, thereby enabling effective information fusion between labeled and unlabeled images. 2) HL: A hierarchical consistency regularization framework that enforces high-level and low-level feature consistency between unlabeled and mixed images, enabling the model to better capture discriminative feature representations.Our method achieves state-of-the-art performance on widely adopted medical image segmentation benchmarks including the ACDC and LA datasets. Source code is available at https://github.com/PHPJava666/M3HL
Related papers
- MedSegFactory: Text-Guided Generation of Medical Image-Mask Pairs [29.350200296504696]
MedSegFactory is a versatile framework that generates paired medical images and segmentation masks across modalities and tasks.<n>It aims to serve as an unlimited data repository, supplying image-mask pairs to enhance existing segmentation tools.
arXiv Detail & Related papers (2025-04-09T13:56:05Z) - SimGen: A Diffusion-Based Framework for Simultaneous Surgical Image and Segmentation Mask Generation [1.9393128408121891]
generative AI models like text-to-image can alleviate data scarcity, incorporating spatial annotations, such as segmentation masks, is crucial for precision-driven surgical applications, simulation, and education.<n>This study introduces both a novel task and method, SimGen, for Simultaneous Image and Mask Generation.<n>SimGen is a diffusion model based on the DDPM framework and Residual U-Net, designed to jointly generate high-fidelity surgical images and their corresponding segmentation masks.
arXiv Detail & Related papers (2025-01-15T18:48:38Z) - Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
We propose Modality Adaptation with text-to-image Diffusion Models (MADM) for semantic segmentation task.
MADM utilizes text-to-image diffusion models pre-trained on extensive image-text pairs to enhance the model's cross-modality capabilities.
We show that MADM achieves state-of-the-art adaptation performance across various modality tasks, including images to depth, infrared, and event modalities.
arXiv Detail & Related papers (2024-10-29T03:49:40Z) - Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting [49.87694319431288]
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources.
We propose a Comprehensive Generative (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs.
Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting.
arXiv Detail & Related papers (2024-06-28T10:05:58Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - Multi-interactive Feature Learning and a Full-time Multi-modality
Benchmark for Image Fusion and Segmentation [66.15246197473897]
Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation.
We propose a textbfMulti-textbfinteractive textbfFeature learning architecture for image fusion and textbfSegmentation.
arXiv Detail & Related papers (2023-08-04T01:03:58Z) - GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps [6.396288020763144]
We propose GuidedMixup, which aims to retain the salient regions in mixup images with low computational overhead.
We develop an efficient pairing algorithm that pursues to minimize the conflict of salient regions of paired images.
Experiments on several datasets demonstrate that GuidedMixup provides a good trade-off between augmentation overhead and generalization performance.
arXiv Detail & Related papers (2023-06-29T00:55:51Z) - Multi-Granularity Denoising and Bidirectional Alignment for Weakly
Supervised Semantic Segmentation [75.32213865436442]
We propose an end-to-end multi-granularity denoising and bidirectional alignment (MDBA) model to alleviate the noisy label and multi-class generalization issues.
The MDBA model can reach the mIoU of 69.5% and 70.2% on validation and test sets for the PASCAL VOC 2012 dataset.
arXiv Detail & Related papers (2023-05-09T03:33:43Z) - HybridMIM: A Hybrid Masked Image Modeling Framework for 3D Medical Image
Segmentation [29.15746532186427]
HybridMIM is a novel hybrid self-supervised learning method based on masked image modeling for 3D medical image segmentation.
We learn the semantic information of medical images at three levels, including:1) partial region prediction to reconstruct key contents of the 3D image, which largely reduces the pre-training time burden.
The proposed framework is versatile to support both CNN and transformer as encoder backbones, and also enables to pre-train decoders for image segmentation.
arXiv Detail & Related papers (2023-03-18T04:43:12Z) - SMMix: Self-Motivated Image Mixing for Vision Transformers [65.809376136455]
CutMix is a vital augmentation strategy that determines the performance and generalization ability of vision transformers (ViTs)
Existing CutMix variants tackle this problem by generating more consistent mixed images or more precise mixed labels.
We propose an efficient and effective Self-Motivated image Mixing method (SMMix) which motivates both image and label enhancement by the model under training itself.
arXiv Detail & Related papers (2022-12-26T00:19:39Z) - SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained
Data [124.95585891086894]
Proposal is called Semantically Proportional Mixing (SnapMix)
It exploits class activation map (CAM) to lessen the label noise in augmenting fine-grained data.
Our method consistently outperforms existing mixed-based approaches.
arXiv Detail & Related papers (2020-12-09T03:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.