When Deep Learning Fails: Limitations of Recurrent Models on Stroke-Based Handwriting for Alzheimer's Disease Detection
- URL: http://arxiv.org/abs/2508.03773v1
- Date: Tue, 05 Aug 2025 11:10:11 GMT
- Title: When Deep Learning Fails: Limitations of Recurrent Models on Stroke-Based Handwriting for Alzheimer's Disease Detection
- Authors: Emanuele Nardone, Tiziana D'Alessandro, Francesco Fontanella, Claudio De Stefano,
- Abstract summary: Alzheimer's disease detection requires expensive neuroimaging or invasive procedures, limiting accessibility.<n>This study explores whether deep learning can enable non-invasive Alzheimer's disease detection through handwriting analysis.
- Score: 3.6443770850509423
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Alzheimer's disease detection requires expensive neuroimaging or invasive procedures, limiting accessibility. This study explores whether deep learning can enable non-invasive Alzheimer's disease detection through handwriting analysis. Using a dataset of 34 distinct handwriting tasks collected from healthy controls and Alzheimer's disease patients, we evaluate and compare three recurrent neural architectures (LSTM, GRU, RNN) against traditional machine learning models. A crucial distinction of our approach is that the recurrent models process pre-extracted features from discrete strokes, not raw temporal signals. This violates the assumption of a continuous temporal flow that recurrent networks are designed to capture. Results reveal that they exhibit poor specificity and high variance. Traditional ensemble methods significantly outperform all deep architectures, achieving higher accuracy with balanced metrics. This demonstrates that recurrent architectures, designed for continuous temporal sequences, fail when applied to feature vectors extracted from ambiguously segmented strokes. Despite their complexity, deep learning models cannot overcome the fundamental disconnect between their architectural assumptions and the discrete, feature-based nature of stroke-level handwriting data. Although performance is limited, the study highlights several critical issues in data representation and model compatibility, pointing to valuable directions for future research.
Related papers
- PHGNN: A Novel Prompted Hypergraph Neural Network to Diagnose Alzheimer's Disease [2.1496312331703935]
We propose a novel Prompted Hypergraph Neural Network (PHGNN) framework that integrates hypergraph based learning with prompt learning.<n>Our model is validated through extensive experiments on the ADNI dataset, outperforming SOTA methods in both AD diagnosis and the prediction of MCI conversion.
arXiv Detail & Related papers (2025-03-18T16:10:43Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Quantum Machine Learning in the Cognitive Domain: Alzheimer's Disease Study [0.0]
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder.
One of the tasks influenced by cognitive impairments is handwriting.
Recent developments in classical artificial intelligence (AI) methods have shown promise in detecting AD through handwriting analysis.
arXiv Detail & Related papers (2023-09-15T16:50:57Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - HGIB: Prognosis for Alzheimer's Disease via Hypergraph Information
Bottleneck [3.8988556182958005]
We propose a novel hypergraph framework based on an information bottleneck strategy (HGIB)
Our framework seeks to discriminate irrelevant information, and therefore, solely focus on harmonising relevant information for future MCI conversion prediction.
We demonstrate, through extensive experiments on ADNI, that our proposed HGIB framework outperforms existing state-of-the-art hypergraph neural networks for Alzheimer's disease prognosis.
arXiv Detail & Related papers (2023-03-18T10:53:43Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
This paper proposes a transfer learning method using class decomposition to detect Alzheimer's disease from sMRI images.
The proposed model achieved state-of-the-art performance in the Alzheimer's disease (AD) vs mild cognitive impairment (MCI) vs cognitively normal (CN) classification task with a 3% increase in accuracy from what is reported in the literature.
arXiv Detail & Related papers (2023-01-31T09:44:52Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Stroke recovery phenotyping through network trajectory approaches and
graph neural networks [0.966840768820136]
We analyze data from the NINDS tPA trial using the Trajectory Profile Clustering (TPC) method to identify distinct stroke recovery patterns.
Our analysis identified 3 distinct stroke trajectory profiles that align with clinically relevant stroke syndromes.
arXiv Detail & Related papers (2021-09-29T18:46:08Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.