PHGNN: A Novel Prompted Hypergraph Neural Network to Diagnose Alzheimer's Disease
- URL: http://arxiv.org/abs/2503.14577v1
- Date: Tue, 18 Mar 2025 16:10:43 GMT
- Title: PHGNN: A Novel Prompted Hypergraph Neural Network to Diagnose Alzheimer's Disease
- Authors: Chenyu Liu, Luca Rossi,
- Abstract summary: We propose a novel Prompted Hypergraph Neural Network (PHGNN) framework that integrates hypergraph based learning with prompt learning.<n>Our model is validated through extensive experiments on the ADNI dataset, outperforming SOTA methods in both AD diagnosis and the prediction of MCI conversion.
- Score: 2.1496312331703935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate diagnosis of Alzheimer's disease (AD) and prognosis of mild cognitive impairment (MCI) conversion are crucial for early intervention. However, existing multimodal methods face several challenges, from the heterogeneity of input data, to underexplored modality interactions, missing data due to patient dropouts, and limited data caused by the time-consuming and costly data collection process. In this paper, we propose a novel Prompted Hypergraph Neural Network (PHGNN) framework that addresses these limitations by integrating hypergraph based learning with prompt learning. Hypergraphs capture higher-order relationships between different modalities, while our prompt learning approach for hypergraphs, adapted from NLP, enables efficient training with limited data. Our model is validated through extensive experiments on the ADNI dataset, outperforming SOTA methods in both AD diagnosis and the prediction of MCI conversion.
Related papers
- Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification [2.1548132286330453]
Researchers have recently sought to leverage advances in machine learning algorithms to detect symptoms of altered gait.
This paper analyzes existing approaches to identify gaps inhibiting translation.
We propose our strong baseline called Asynchronous Multi-Stream Graph Convolutional Network (AMS-GCN) that can reliably differentiate multiple categories of pathological gaits.
arXiv Detail & Related papers (2024-09-20T16:47:45Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - HGIB: Prognosis for Alzheimer's Disease via Hypergraph Information
Bottleneck [3.8988556182958005]
We propose a novel hypergraph framework based on an information bottleneck strategy (HGIB)
Our framework seeks to discriminate irrelevant information, and therefore, solely focus on harmonising relevant information for future MCI conversion prediction.
We demonstrate, through extensive experiments on ADNI, that our proposed HGIB framework outperforms existing state-of-the-art hypergraph neural networks for Alzheimer's disease prognosis.
arXiv Detail & Related papers (2023-03-18T10:53:43Z) - Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer
Classification [4.179845212740817]
We introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis.
Our framework allows for higher-order relations among multi-modal imaging and non-imaging data.
We demonstrate, through our experiments, that our framework is able to outperform current techniques for Alzheimer's disease diagnosis.
arXiv Detail & Related papers (2022-04-04T10:31:42Z) - Multimodal Representations Learning and Adversarial Hypergraph Fusion
for Early Alzheimer's Disease Prediction [30.99183477161096]
We propose a novel representation learning and adversarial hypergraph fusion framework for Alzheimer's disease diagnosis.
Our model achieves superior performance on Alzheimer's disease detection compared with other related models.
arXiv Detail & Related papers (2021-07-21T08:08:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
We propose low-resource medical dialogue generation to transfer the diagnostic experience from source diseases to target ones.
We also develop a Graph-Evolving Meta-Learning framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease.
arXiv Detail & Related papers (2020-12-22T13:20:23Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.