SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
- URL: http://arxiv.org/abs/2508.03785v1
- Date: Tue, 05 Aug 2025 15:29:57 GMT
- Title: SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
- Authors: Teodor Chiaburu, Vipin Singh, Frank Haußer, Felix Bießmann,
- Abstract summary: Accurate classification of soil horizons is crucial for monitoring soil health.<n>Our approach integrates image data and geotemporal first predict depth markers, segmenting the soil profile into horizon candidates.<n>Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured.
- Score: 0.9937132009954994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recent advances in foundation models have improved the state of the art in many domains, some problems in empirical sciences could not benefit from this progress yet. Soil horizon classification, for instance, remains challenging because of its multimodal and multitask characteristics and a complex hierarchically structured label taxonomy. Accurate classification of soil horizons is crucial for monitoring soil health, which directly impacts agricultural productivity, food security, ecosystem stability and climate resilience. In this work, we propose $\textit{SoilNet}$ - a multimodal multitask model to tackle this problem through a structured modularized pipeline. Our approach integrates image data and geotemporal metadata to first predict depth markers, segmenting the soil profile into horizon candidates. Each segment is characterized by a set of horizon-specific morphological features. Finally, horizon labels are predicted based on the multimodal concatenated feature vector, leveraging a graph-based label representation to account for the complex hierarchical relationships among soil horizons. Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured. We demonstrate the effectiveness of our approach on a real-world soil profile dataset. All code and experiments can be found in our repository: https://github.com/calgo-lab/BGR/
Related papers
- Hierarchical Multi-Label Generation with Probabilistic Level-Constraint [3.1427813443719868]
Hierarchical Extreme Multi-Label Classification poses greater difficulties compared to traditional multi-label classification.<n>We employ a generative framework with Probabilistic Level Constraints (PLC) to generate hierarchical labels within a specific taxonomy.<n>Our approach achieves a new SOTA performance in the HMG task, but also has a much better performance in constrained the output of model than previous research work.
arXiv Detail & Related papers (2025-04-30T07:56:53Z) - Learning and Evaluating Hierarchical Feature Representations [3.770103075126785]
We propose a novel framework, Hierarchical Composition of Orthogonal Subspaces (Hier-COS)<n>Hier-COS learns to map deep feature embeddings into a vector space that is, by design, consistent with the structure of a given taxonomy tree.<n>We demonstrate that Hier-COS achieves state-of-the-art hierarchical performance across all the datasets while simultaneously beating top-1 accuracy in all but one case.
arXiv Detail & Related papers (2025-03-10T20:59:41Z) - Multi-label Node Classification On Graph-Structured Data [7.892731722253387]
Graph Neural Networks (GNNs) have shown state-of-the-art improvements in node classification tasks on graphs.
A more general and realistic scenario in which each node could have multiple labels has so far received little attention.
We collect and release three real-world biological datasets and develop a multi-label graph generator.
arXiv Detail & Related papers (2023-04-20T15:34:20Z) - Weakly-supervised Action Localization via Hierarchical Mining [76.00021423700497]
Weakly-supervised action localization aims to localize and classify action instances in the given videos temporally with only video-level categorical labels.
We propose a hierarchical mining strategy under video-level and snippet-level manners, i.e., hierarchical supervision and hierarchical consistency mining.
We show that HiM-Net outperforms existing methods on THUMOS14 and ActivityNet1.3 datasets with large margins by hierarchically mining the supervision and consistency.
arXiv Detail & Related papers (2022-06-22T12:19:09Z) - Scalable Multi-view Clustering with Graph Filtering [18.83570662893356]
We propose a generic framework to cluster both attribute and graph data with heterogeneous features.
Specifically, we first adopt graph filtering technique to eliminate high-frequency noise.
To handle the scalability challenge, we develop a novel sampling strategy to improve the quality of anchors.
arXiv Detail & Related papers (2022-05-18T22:04:23Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
We present a hierarchical multi-label representation learning framework that can leverage all available labels and preserve the hierarchical relationship between classes.
We introduce novel hierarchy preserving losses, which jointly apply a hierarchical penalty to the contrastive loss, and enforce the hierarchy constraint.
arXiv Detail & Related papers (2022-04-27T21:41:44Z) - Deep Hierarchical Semantic Segmentation [76.40565872257709]
hierarchical semantic segmentation (HSS) aims at structured, pixel-wise description of visual observation in terms of a class hierarchy.
HSSN casts HSS as a pixel-wise multi-label classification task, only bringing minimal architecture change to current segmentation models.
With hierarchy-induced margin constraints, HSSN reshapes the pixel embedding space, so as to generate well-structured pixel representations.
arXiv Detail & Related papers (2022-03-27T15:47:44Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
We evaluate a big data processing pipeline to auto-generate labels for remote sensing data.
We utilize the big geo-data platform IBM PAIRS to dynamically generate such labels in dense urban areas.
arXiv Detail & Related papers (2022-01-31T20:02:22Z) - HUMAP: Hierarchical Uniform Manifold Approximation and Projection [42.50219822975012]
This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures.
We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show a case study applying HUMAP for dataset labelling.
arXiv Detail & Related papers (2021-06-14T19:27:54Z) - Crop mapping from image time series: deep learning with multi-scale
label hierarchies [22.58506027920305]
We develop a crop classification method that exploits expert knowledge and significantly improves the mapping of rare crop types.
The three-level label hierarchy is encoded in a convolutional, recurrent neural network (convRNN)
We validate the proposed method on a new, large dataset that we make public.
arXiv Detail & Related papers (2021-02-17T15:27:49Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
The proposed method can improve several state-of-the-art baselines by a large margin (up to $33%$ relative gain) in terms of Recall@50.
Experiments show that the proposed simple yet effective method can improve several state-of-the-art baselines by a large margin.
arXiv Detail & Related papers (2020-09-12T17:36:53Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.