An Entity Linking Agent for Question Answering
- URL: http://arxiv.org/abs/2508.03865v2
- Date: Thu, 07 Aug 2025 17:36:04 GMT
- Title: An Entity Linking Agent for Question Answering
- Authors: Yajie Luo, Yihong Wu, Muzhi Li, Fengran Mo, Jia Ao Sun, Xinyu Wang, Liheng Ma, Yingxue Zhang, Jian-Yun Nie,
- Abstract summary: We propose an entity linking agent for Question Answering (QA) systems based on a Large Language Model that simulates human cognitive tasks.<n>The agent actively identifies entity mentions, retrieves candidate entities, and makes decision.<n>The results confirm the robustness and effectiveness of our agent.
- Score: 26.235591344527567
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Some Question Answering (QA) systems rely on knowledge bases (KBs) to provide accurate answers. Entity Linking (EL) plays a critical role in linking natural language mentions to KB entries. However, most existing EL methods are designed for long contexts and do not perform well on short, ambiguous user questions in QA tasks. We propose an entity linking agent for QA, based on a Large Language Model that simulates human cognitive workflows. The agent actively identifies entity mentions, retrieves candidate entities, and makes decision. To verify the effectiveness of our agent, we conduct two experiments: tool-based entity linking and QA task evaluation. The results confirm the robustness and effectiveness of our agent.
Related papers
- The benefits of query-based KGQA systems for complex and temporal questions in LLM era [55.20230501807337]
Large language models excel in question-answering (QA) yet still struggle with multi-hop reasoning and temporal questions.<n> Query-based knowledge graph QA (KGQA) offers a modular alternative by generating executable queries instead of direct answers.<n>We explore multi-stage query-based framework for WikiData QA, proposing multi-stage approach that enhances performance on challenging multi-hop and temporal benchmarks.
arXiv Detail & Related papers (2025-07-16T06:41:03Z) - QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
We propose QLASS (Q-guided Language Agent Stepwise Search), to automatically generate annotations by estimating Q-values.<n>With the stepwise guidance, we propose a Q-guided generation strategy to enable language agents to better adapt to long-term value.<n>We empirically demonstrate that QLASS can lead to more effective decision making through qualitative analysis.
arXiv Detail & Related papers (2025-02-04T18:58:31Z) - Multi-Agents Based on Large Language Models for Knowledge-based Visual Question Answering [6.6897007888321465]
We propose a voting framework for knowledge-based Visual Question Answering.<n>We design three agents that simulate different levels of staff in a team, and assign the available tools according to the levels.<n>Experiments on OK-VQA and A-OKVQA show that our approach outperforms other baselines by 2.2 and 1.0, respectively.
arXiv Detail & Related papers (2024-12-24T11:24:56Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
We investigate the use of Multi-Embodied LLM Explorers (MELE) for question-answering in an unknown environment.
Multiple LLM-based agents independently explore and then answer queries about a household environment.
We analyze different aggregation methods to generate a single, final answer for each query.
arXiv Detail & Related papers (2024-06-16T12:46:40Z) - Is the House Ready For Sleeptime? Generating and Evaluating Situational Queries for Embodied Question Answering [48.43453390717167]
We present and tackle the problem of Embodied Question Answering with Situational Queries (S-EQA) in a household environment.<n>Unlike prior EQA work, situational queries require the agent to correctly identify multiple object-states and reach a consensus on their states for an answer.<n>We introduce a novel Prompt-Generate-Evaluate scheme that wraps around an LLM's output to generate unique situational queries and corresponding consensus object information.
arXiv Detail & Related papers (2024-05-08T00:45:20Z) - SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References [73.67707138779245]
We propose a new evaluation metric: SQuArE (Sentence-level QUestion AnsweRing Evaluation)
We evaluate SQuArE on both sentence-level extractive (Answer Selection) and generative (GenQA) QA systems.
arXiv Detail & Related papers (2023-09-21T16:51:30Z) - Utilizing Background Knowledge for Robust Reasoning over Traffic
Situations [63.45021731775964]
We focus on a complementary research aspect of Intelligent Transportation: traffic understanding.
We scope our study to text-based methods and datasets given the abundant commonsense knowledge.
We adopt three knowledge-driven approaches for zero-shot QA over traffic situations.
arXiv Detail & Related papers (2022-12-04T09:17:24Z) - Community Question Answering Entity Linking via Leveraging Auxiliary
Data [7.834536363163232]
We propose a new task of CQA entity linking (CQAEL) as linking the textual entity mentions detected from CQA texts with their corresponding entities in a knowledge base.
Traditional entity linking methods mainly focus on linking entities in news documents.
We propose a novel transformer-based framework to effectively harness the knowledge delivered by different kinds of auxiliary data to promote the linking performance.
arXiv Detail & Related papers (2022-05-24T09:25:18Z) - ASQA: Factoid Questions Meet Long-Form Answers [35.11889930792675]
This work focuses on factoid questions that are ambiguous, that is, have different correct answers depending on interpretation.
Answers to ambiguous questions should synthesize factual information from multiple sources into a long-form summary.
We use this notion of correctness to define an automated metric of performance for ASQA.
arXiv Detail & Related papers (2022-04-12T21:58:44Z) - Efficient Contextualization using Top-k Operators for Question Answering
over Knowledge Graphs [24.520002698010856]
This work presents ECQA, an efficient method that prunes irrelevant parts of the search space using KB-aware signals.
Experiments with two recent QA benchmarks demonstrate the superiority of ECQA over state-of-the-art baselines with respect to answer presence, size of the search space, and runtimes.
arXiv Detail & Related papers (2021-08-19T10:06:14Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
We propose a conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts.
Our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.
arXiv Detail & Related papers (2020-05-28T08:26:06Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
We introduce two approaches to improve unsupervised Question Answering (QA)
First, we harvest lexically and syntactically divergent questions from Wikipedia to automatically construct a corpus of question-answer pairs (named as RefQA)
Second, we take advantage of the QA model to extract more appropriate answers, which iteratively refines data over RefQA.
arXiv Detail & Related papers (2020-05-06T15:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.