論文の概要: Reinforcement Learning in MDPs with Information-Ordered Policies
- arxiv url: http://arxiv.org/abs/2508.03904v1
- Date: Tue, 05 Aug 2025 20:43:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.439896
- Title: Reinforcement Learning in MDPs with Information-Ordered Policies
- Title(参考訳): 情報順応型MDPにおける強化学習
- Authors: Zhongjun Zhang, Shipra Agrawal, Ilan Lobel, Sean R. Sinclair, Christina Lee Yu,
- Abstract要約: 無限水平平均コストマルコフ決定過程に対するエポック型強化学習アルゴリズムを提案する。
我々は,このアルゴリズムが,部分順序の幅を$w$とする$O(sqrtw log(|Theta|) T)$の残差を達成していることを示す。
本稿では、在庫管理やキューシステムなど、オペレーション研究におけるこれらの部分的な注文の適用性について説明する。
- 参考スコア(独自算出の注目度): 7.881781003954483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an epoch-based reinforcement learning algorithm for infinite-horizon average-cost Markov decision processes (MDPs) that leverages a partial order over a policy class. In this structure, $\pi' \leq \pi$ if data collected under $\pi$ can be used to estimate the performance of $\pi'$, enabling counterfactual inference without additional environment interaction. Leveraging this partial order, we show that our algorithm achieves a regret bound of $O(\sqrt{w \log(|\Theta|) T})$, where $w$ is the width of the partial order. Notably, the bound is independent of the state and action space sizes. We illustrate the applicability of these partial orders in many domains in operations research, including inventory control and queuing systems. For each, we apply our framework to that problem, yielding new theoretical guarantees and strong empirical results without imposing extra assumptions such as convexity in the inventory model or specialized arrival-rate structure in the queuing model.
- Abstract(参考訳): 政策クラス上の部分順序を利用する無限水平平均コストマルコフ決定過程(MDP)に対するエポック型強化学習アルゴリズムを提案する。
この構造において、$\pi' \leq \pi$は、$\pi$で収集されたデータを用いて$\pi'$のパフォーマンスを推定することができ、追加の環境相互作用なしに反実的推論を可能にする。
この部分順序を利用して、我々のアルゴリズムは、部分順序の幅を$w$とする$O(\sqrt{w \log(|\Theta|) T})$の後悔境界を達成することを示す。
特に、境界は状態と作用空間のサイズとは独立である。
本稿では、在庫管理やキューシステムなど、オペレーション研究におけるこれらの部分的な注文の適用性について説明する。
それぞれの枠組みを,在庫モデルにおける凸性やキューイングモデルにおける特殊到着速度構造といった余分な仮定を課すことなく,新たな理論的保証と強力な経験的結果を得る。
関連論文リスト
- Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
一般関数近似の文脈において,無限水平平均逆マルコフ決定過程(AMDP)について検討する。
最適化最適化(LOOP)と呼ばれる新しいアルゴリズムフレームワークを提案する。
我々は LOOP がサブ線形 $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret を達成することを示す。
論文 参考訳(メタデータ) (2024-04-19T06:24:22Z) - Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space [0.0]
離散時間可算状態空間マルコフ決定過程の族を最適に制御する問題について検討する。
動的サイズのエピソードを用いたトンプソンサンプリングに基づくアルゴリズムを提案する。
提案アルゴリズムは, 近似最適制御アルゴリズムの開発に応用可能であることを示す。
論文 参考訳(メタデータ) (2023-06-05T03:57:16Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
線形関数近似による強化学習と,コスト関数の逆変化について検討した。
本稿では,未知のダイナミクスと帯域幅フィードバックの一般設定に挑戦する,計算効率のよいポリシ最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T17:26:39Z) - When are Local Queries Useful for Robust Learning? [25.832511407411637]
本研究では,学習者が局所的なクエリを用いてより多くのパワーを与えられる学習モデルについて検討する。
我々は、ロバストな経験的リスク最小化を行う最初の分布自由アルゴリズムを与える。
我々は、0,1n$でハーフスペースに対してロバストな学習アルゴリズムを与え、その後、精度に縛られた敵に対して$mathbbRn$でハーフスペースに対してロバスト性を保証する。
論文 参考訳(メタデータ) (2022-10-12T11:04:22Z) - Nearly Optimal Latent State Decoding in Block MDPs [74.51224067640717]
エピソードブロック MDP では、意思決定者は少数の潜在状態から生成される豊富な観測やコンテキストにアクセスすることができる。
まず、固定動作ポリシーに基づいて生成されたデータに基づいて、潜時状態復号関数を推定することに興味がある。
次に、報酬のないフレームワークにおいて、最適に近いポリシーを学習する問題について研究する。
論文 参考訳(メタデータ) (2022-08-17T18:49:53Z) - Simultaneously Learning Stochastic and Adversarial Bandits under the
Position-Based Model [9.945948163150874]
本研究は, 位置ベースモデルに基づくオンライン学習における課題のランク付けに関する研究である。
提案アルゴリズムは,対向環境において$O(logT)$後悔を同時に達成し,対向環境において$O(msqrtnT)$後悔を同時に達成する。
実験により,本アルゴリズムは,既存手法と競合する環境下で同時に学習できることが確認された。
論文 参考訳(メタデータ) (2022-07-12T10:00:14Z) - Horizon-Free Reinforcement Learning in Polynomial Time: the Power of
Stationary Policies [88.75843804630772]
我々は既存の境界に対して,$Oleft(mathrmpoly(S,A,log K)sqrtKright)を後悔するアルゴリズムを設計する。
この結果は、定常政策の近似力、安定性、および濃度特性を確立する新しい構造補題の列に依存している。
論文 参考訳(メタデータ) (2022-03-24T08:14:12Z) - First-Order Regret in Reinforcement Learning with Linear Function
Approximation: A Robust Estimation Approach [57.570201404222935]
我々は,大規模状態空間を用いた強化学習において,$mathcalO(sqrtV_1star K)$として,後悔のスケーリングが得られることを示す。
この結果を得るためには,少なくとも2乗推定に基づく既存手法は不十分であることを示す。
論文 参考訳(メタデータ) (2021-12-07T00:29:57Z) - Implicitly Regularized RL with Implicit Q-Values [42.87920755961722]
Q$関数は多くの強化学習(RL)アルゴリズムにおいて中心的な量であり、RLエージェントは(ソフト)グレーディポリシーに従って振る舞う。
対数政治と値関数の和として、暗黙的に$Q$-関数をパラメータ化することを提案する。
我々は,大規模アクション空間に適した実用的な非政治的深部RLアルゴリズムを導出し,ポリシーと$Q$値とのソフトマックス関係を強制する。
論文 参考訳(メタデータ) (2021-08-16T12:20:47Z) - Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping [99.59319332864129]
本稿では,割引決定(MDP)のための強化学習について検討する。
本稿では,特徴写像を利用した新しいアルゴリズムを提案し,$tilde O(dsqrtT/ (1-gamma)2)$ regretを求める。
以上の結果から,提案した強化学習アルゴリズムは,最大1-γ-0.5$の係数でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-23T17:08:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。