Investigating the Impact of Large-Scale Pre-training on Nutritional Content Estimation from 2D Images
- URL: http://arxiv.org/abs/2508.03996v1
- Date: Wed, 06 Aug 2025 00:57:55 GMT
- Title: Investigating the Impact of Large-Scale Pre-training on Nutritional Content Estimation from 2D Images
- Authors: Michele Andrade, Guilherme A. L. Silva, Valéria Santos, Gladston Moreira, Eduardo Luz,
- Abstract summary: Estimating nutritional content of food from images is a critical task with significant implications for health and dietary monitoring.<n>In this paper, we investigate the impact of large-scale pre-training datasets on the performance of deep learning models for nutritional estimation using only 2D images.
- Score: 0.0699049312989311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the nutritional content of food from images is a critical task with significant implications for health and dietary monitoring. This is challenging, especially when relying solely on 2D images, due to the variability in food presentation, lighting, and the inherent difficulty in inferring volume and mass without depth information. Furthermore, reproducibility in this domain is hampered by the reliance of state-of-the-art methods on proprietary datasets for large-scale pre-training. In this paper, we investigate the impact of large-scale pre-training datasets on the performance of deep learning models for nutritional estimation using only 2D images. We fine-tune and evaluate Vision Transformer (ViT) models pre-trained on two large public datasets, ImageNet and COYO, comparing their performance against baseline CNN models (InceptionV2 and ResNet-50) and a state-of-the-art method pre-trained on the proprietary JFT-300M dataset. We conduct extensive experiments on the Nutrition5k dataset, a large-scale collection of real-world food plates with high-precision nutritional annotations. Our evaluation using Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAE%) reveals that models pre-trained on JFT-300M significantly outperform those pre-trained on public datasets. Unexpectedly, the model pre-trained on the massive COYO dataset performs worse than the model pre-trained on ImageNet for this specific regression task, refuting our initial hypothesis. Our analysis provides quantitative evidence highlighting the critical role of pre-training dataset characteristics, including scale, domain relevance, and curation quality, for effective transfer learning in 2D nutritional estimation.
Related papers
- Slight Corruption in Pre-training Data Makes Better Diffusion Models [71.90034201302397]
Diffusion models (DMs) have shown remarkable capabilities in generating high-quality images, audios, and videos.
DMs benefit significantly from extensive pre-training on large-scale datasets.
However, pre-training datasets often contain corrupted pairs where conditions do not accurately describe the data.
This paper presents the first comprehensive study on the impact of such corruption in pre-training data of DMs.
arXiv Detail & Related papers (2024-05-30T21:35:48Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - On the Connection between Pre-training Data Diversity and Fine-tuning
Robustness [66.30369048726145]
We find that the primary factor influencing downstream effective robustness is data quantity.
We demonstrate our findings on pre-training distributions drawn from various natural and synthetic data sources.
arXiv Detail & Related papers (2023-07-24T05:36:19Z) - Single-Stage Heavy-Tailed Food Classification [7.800379384628357]
We introduce a novel single-stage heavy-tailed food classification framework.
Our method is evaluated on two heavy-tailed food benchmark datasets, Food101-LT and VFN-LT.
arXiv Detail & Related papers (2023-07-01T00:45:35Z) - Large-scale Dataset Pruning with Dynamic Uncertainty [28.60845105174658]
The state of the art of many learning tasks, e.g., image classification, is advanced by collecting larger datasets and then training larger models on them.
In this paper, we investigate how to prune the large-scale datasets, and thus produce an informative subset for training sophisticated deep models with negligible performance drop.
arXiv Detail & Related papers (2023-06-08T13:14:35Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - The effectiveness of MAE pre-pretraining for billion-scale pretraining [65.98338857597935]
We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model.
We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition.
arXiv Detail & Related papers (2023-03-23T17:56:12Z) - The Role of Pre-training Data in Transfer Learning [20.768366728182997]
We investigate the impact of pre-training data distribution on the few-shot and full fine-tuning performance.
We find that the choice of the pre-training data source is essential for the few-shot transfer, but its role decreases as more data is made available for fine-tuning.
arXiv Detail & Related papers (2023-02-27T09:10:08Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - Effect of large-scale pre-training on full and few-shot transfer
learning for natural and medical images [2.030567625639093]
We conduct large-scale pre-training on large source datasets of either natural (ImageNet-21k/1k) or medical chest X-Ray images.
We compare full and few-shot transfer using different target datasets from both natural and medical imaging domains.
Our observations provide evidence that while pre-training and transfer on closely related datasets do show clear benefit of increasing model and data size during pre-training, such benefits are not clearly visible when source and target datasets are further apart.
arXiv Detail & Related papers (2021-05-31T21:55:56Z) - Self-Supervised Pretraining Improves Self-Supervised Pretraining [83.1423204498361]
Self-supervised pretraining requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation.
This paper explores Hierarchical PreTraining (HPT), which decreases convergence time and improves accuracy by initializing the pretraining process with an existing pretrained model.
We show HPT converges up to 80x faster, improves accuracy across tasks, and improves the robustness of the self-supervised pretraining process to changes in the image augmentation policy or amount of pretraining data.
arXiv Detail & Related papers (2021-03-23T17:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.