Decoupled Contrastive Learning for Federated Learning
- URL: http://arxiv.org/abs/2508.04005v1
- Date: Wed, 06 Aug 2025 01:39:54 GMT
- Title: Decoupled Contrastive Learning for Federated Learning
- Authors: Hyungbin Kim, Incheol Baek, Yon Dohn Chung,
- Abstract summary: We introduce Decoupled Contrastive Learning for Federated Learning (DCFL)<n>DCFL is a novel framework that decouples the existing contrastive loss into two objectives.<n>Our results show that DCFL achieves stronger alignment between positive samples and greater uniformity between negative samples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a distributed machine learning paradigm that allows multiple participants to train a shared model by exchanging model updates instead of their raw data. However, its performance is degraded compared to centralized approaches due to data heterogeneity across clients. While contrastive learning has emerged as a promising approach to mitigate this, our theoretical analysis reveals a fundamental conflict: its asymptotic assumptions of an infinite number of negative samples are violated in finite-sample regime of federated learning. To address this issue, we introduce Decoupled Contrastive Learning for Federated Learning (DCFL), a novel framework that decouples the existing contrastive loss into two objectives. Decoupling the loss into its alignment and uniformity components enables the independent calibration of the attraction and repulsion forces without relying on the asymptotic assumptions. This strategy provides a contrastive learning method suitable for federated learning environments where each client has a small amount of data. Our experimental results show that DCFL achieves stronger alignment between positive samples and greater uniformity between negative samples compared to existing contrastive learning methods. Furthermore, experimental results on standard benchmarks, including CIFAR-10, CIFAR-100, and Tiny-ImageNet, demonstrate that DCFL consistently outperforms state-of-the-art federated learning methods.
Related papers
- Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients [60.22876915395139]
This paper studies a challenging robust federated learning task with model heterogeneous and data corrupted clients.<n>Data corruption is unavoidable due to factors such as random noise, compression artifacts, or environmental conditions in real-world deployment.<n>We propose a novel Robust Asymmetric Heterogeneous Federated Learning framework to address these issues.
arXiv Detail & Related papers (2025-03-12T09:52:04Z) - Federated Testing (FedTest): A New Scheme to Enhance Convergence and Mitigate Adversarial Attacks in Federating Learning [35.14491996649841]
We introduce a novel federated learning framework, which we call federated testing for federated learning (FedTest)<n>In FedTest, the local data of a specific user is used to train the model of that user and test the models of the other users.<n>Our numerical results reveal that the proposed method not only accelerates convergence rates but also diminishes the potential influence of malicious users.
arXiv Detail & Related papers (2025-01-19T21:01:13Z) - Dissecting Representation Misalignment in Contrastive Learning via Influence Function [15.28417468377201]
We introduce the Extended Influence Function for Contrastive Loss (ECIF), an influence function crafted for contrastive loss.<n>ECIF considers both positive and negative samples and provides a closed-form approximation of contrastive learning models.<n>Building upon ECIF, we develop a series of algorithms for data evaluation, misalignment detection, and misprediction trace-back tasks.
arXiv Detail & Related papers (2024-11-18T15:45:41Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Depersonalized Federated Learning: Tackling Statistical Heterogeneity by
Alternating Stochastic Gradient Descent [6.394263208820851]
Federated learning (FL) enables devices to train a common machine learning (ML) model for intelligent inference without data sharing.
Raw data held by various cooperativelyicipators are always non-identically distributedly.
We propose a new FL that can significantly statistical optimize by the de-speed of this process.
arXiv Detail & Related papers (2022-10-07T10:30:39Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Robust Federated Learning: The Case of Affine Distribution Shifts [41.27887358989414]
We develop a robust federated learning algorithm that achieves satisfactory performance against distribution shifts in users' samples.
We show that an affine distribution shift indeed suffices to significantly decrease the performance of the learnt classifier in a new test user.
arXiv Detail & Related papers (2020-06-16T03:43:59Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.