論文の概要: VisualTrans: A Benchmark for Real-World Visual Transformation Reasoning
- arxiv url: http://arxiv.org/abs/2508.04043v1
- Date: Wed, 06 Aug 2025 03:07:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.520913
- Title: VisualTrans: A Benchmark for Real-World Visual Transformation Reasoning
- Title(参考訳): VisualTrans: 実世界のビジュアルトランスフォーメーション推論のためのベンチマーク
- Authors: Yuheng Ji, Yipu Wang, Yuyang Liu, Xiaoshuai Hao, Yue Liu, Yuting Zhao, Huaihai Lyu, Xiaolong Zheng,
- Abstract要約: ビジュアルトランスフォーメーション推論(VTR)は、知的エージェントが動的シーンを理解するための重要な認知能力である。
既存のベンチマークは、sim-to-realギャップ、タスクの複雑さの制限、不完全な推論カバレッジに悩まされている。
VisualTransは、現実世界の人間とオブジェクトのインタラクションシナリオにおいて、VTR用に特別に設計された最初の包括的なベンチマークである。
- 参考スコア(独自算出の注目度): 10.497961559068493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual transformation reasoning (VTR) is a vital cognitive capability that empowers intelligent agents to understand dynamic scenes, model causal relationships, and predict future states, and thereby guiding actions and laying the foundation for advanced intelligent systems. However, existing benchmarks suffer from a sim-to-real gap, limited task complexity, and incomplete reasoning coverage, limiting their practical use in real-world scenarios. To address these limitations, we introduce VisualTrans, the first comprehensive benchmark specifically designed for VTR in real-world human-object interaction scenarios. VisualTrans encompasses 12 semantically diverse manipulation tasks and systematically evaluates three essential reasoning dimensions - spatial, procedural, and quantitative - through 6 well-defined subtask types. The benchmark features 472 high-quality question-answer pairs in various formats, including multiple-choice, open-ended counting, and target enumeration. We introduce a scalable data construction pipeline built upon first-person manipulation videos, which integrates task selection, image pair extraction, automated metadata annotation with large multimodal models, and structured question generation. Human verification ensures the final benchmark is both high-quality and interpretable. Evaluations of various state-of-the-art vision-language models show strong performance in static spatial tasks. However, they reveal notable shortcomings in dynamic, multi-step reasoning scenarios, particularly in areas like intermediate state recognition and transformation sequence planning. These findings highlight fundamental weaknesses in temporal modeling and causal reasoning, providing clear directions for future research aimed at developing more capable and generalizable VTR systems. The dataset and code are available at https://github.com/WangYipu2002/VisualTrans.
- Abstract(参考訳): ビジュアルトランスフォーメーション推論(VTR)は、インテリジェントエージェントがダイナミックなシーンを理解し、因果関係をモデル化し、将来の状態を予測し、それによって行動の導出と高度なインテリジェントシステムの基盤を構築するための重要な認知能力である。
しかし、既存のベンチマークは、シミュレートと現実のギャップ、タスクの複雑さの制限、不完全な推論のカバレッジに悩まされており、現実のシナリオでの実践的使用を制限している。
これらの制限に対処するために、実世界の人間とオブジェクトの相互作用シナリオにおいて、VTR用に特別に設計された最初の包括的なベンチマークであるVisualTransを紹介します。
VisualTransは、意味的に多様性のある12の操作タスクを含み、空間、手続き、定量的な3つの重要な推論次元を、6つの明確に定義されたサブタスクタイプを通じて体系的に評価する。
ベンチマークでは、マルチチョイス、オープンエンドカウント、ターゲット列挙など、さまざまなフォーマットの高品質な質問応答ペアが472ある。
本稿では,タスク選択,画像ペア抽出,メタデータの自動アノテーション,大規模マルチモーダルモデル,構造化質問生成などを統合した,一人称操作ビデオに基づくスケーラブルなデータ構築パイプラインを提案する。
人間の検証は、最終的なベンチマークが高品質かつ解釈可能であることを保証します。
様々な最先端の視覚言語モデルの評価は、静的な空間的タスクにおいて強い性能を示す。
しかし、特に中間状態認識や変換シーケンス計画のような分野において、動的で多段階の推論シナリオにおいて顕著な欠点が明らかにされている。
これらの知見は、時間的モデリングと因果推論の根本的な弱点を強調し、より有能で一般化可能なVTRシステムの開発を目的とした将来の研究の明確な方向性を提供する。
データセットとコードはhttps://github.com/WangYipu2002/VisualTransで公開されている。
関連論文リスト
- RingMo-Agent: A Unified Remote Sensing Foundation Model for Multi-Platform and Multi-Modal Reasoning [15.670921552151775]
RingMo-Agentはマルチモーダルおよびマルチプラットフォームデータを扱うように設計されている。
RS-VL3Mと呼ばれる大規模な視覚言語データセットでサポートされている。
これは視覚的理解と高度な分析タスクの両方に有効である。
論文 参考訳(メタデータ) (2025-07-28T12:39:33Z) - Spatial Understanding from Videos: Structured Prompts Meet Simulation Data [79.52833996220059]
本稿では,事前学習された視覚言語モデルにおける3次元空間推論を,アーキテクチャを変更することなく拡張するための統一的なフレームワークを提案する。
このフレームワークは、複雑なシーンと質問を解釈可能な推論ステップに分解する構造化プロンプト戦略であるSpatialMindと、多様な3Dシミュレーションシーンから構築されたスケーラブルな質問応答データセットであるScanForgeQAを組み合わせる。
論文 参考訳(メタデータ) (2025-06-04T07:36:33Z) - Vision-Language Modeling Meets Remote Sensing: Models, Datasets and Perspectives [36.297745473653166]
視覚言語モデリング(VLM)は、画像と自然言語の間の情報ギャップを埋めることを目的としている。
大規模な画像テキストペアを事前学習し、タスク固有のデータを微調整するという新しいパラダイムの下で、リモートセンシング領域のVLMは大きな進歩を遂げた。
論文 参考訳(メタデータ) (2025-05-20T13:47:40Z) - Cognitive Disentanglement for Referring Multi-Object Tracking [28.325814292139686]
本稿では,CDRMT(Cognitive Disentanglement for Referring Multi-Object Tracking)フレームワークを提案する。
CDRMTは人間の視覚処理システムからRMOTタスクへの"What"と"where"の経路を適応させる。
異なるベンチマークデータセットの実験では、CDRMTが最先端のメソッドよりも大幅に改善されていることが示されている。
論文 参考訳(メタデータ) (2025-03-14T15:21:54Z) - OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models [58.45517851437422]
VsTP(Visually-situated text parsing)は、自動化された文書理解の需要が高まり、最近顕著な進歩を遂げている。
既存のソリューションは、タスク固有のアーキテクチャと個々のタスクの目的に依存していることが多い。
本稿では,テキストスポッティング,キー情報抽出,テーブル認識,レイアウト解析など,VsTPの典型的なタスクを統一する汎用モデルであるOmni V2を紹介する。
論文 参考訳(メタデータ) (2025-02-22T09:32:01Z) - LaVin-DiT: Large Vision Diffusion Transformer [99.98106406059333]
LaVin-DiTは、20以上のコンピュータビジョンタスクを生成フレームワークで扱うために設計された、スケーラブルで統一された基盤モデルである。
視覚タスクの生成性能を最適化するための重要なイノベーションを紹介する。
このモデルは0.1Bから3.4Bのパラメータに拡張され、様々な視覚タスクにまたがる相当なスケーラビリティと最先端の性能を示す。
論文 参考訳(メタデータ) (2024-11-18T12:05:27Z) - BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation [57.40024206484446]
我々は、コンピュータビジョンモデルの体系的評価のために、完全にカスタマイズされた合成データを生成するためのツールと資産のセットであるBEHAVIOR Vision Suite(BVS)を紹介する。
BVSはシーンレベルで多数の調整可能なパラメータをサポートする。
アプリケーションシナリオを3つ紹介する。
論文 参考訳(メタデータ) (2024-05-15T17:57:56Z) - Analyzing Local Representations of Self-supervised Vision Transformers [34.56680159632432]
各種自己監督型視覚変換器(ViT)の比較分析を行った。
大規模言語モデルに触発されて、微調整をほとんど行わずに様々なコンピュータビジョンタスクを実行するViTの能力について検討する。
論文 参考訳(メタデータ) (2023-12-31T11:38:50Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。