PAIRS: Parametric-Verified Adaptive Information Retrieval and Selection for Efficient RAG
- URL: http://arxiv.org/abs/2508.04057v1
- Date: Wed, 06 Aug 2025 03:33:01 GMT
- Title: PAIRS: Parametric-Verified Adaptive Information Retrieval and Selection for Efficient RAG
- Authors: Wang Chen, Guanqiang Qi, Weikang Li, Yang Li, Deguo Xia, Jizhou Huang,
- Abstract summary: We introduce Parametric-verified Adaptive Information Retrieval and Selection (PAIRS)<n>PAIRS integrates parametric and retrieved knowledge to adaptively determine whether to retrieve and how to select external information.<n>We show that PAIRS reduces retrieval costs by around 25% (triggering for only 75% of queries) while still improving accuracy-achieving +1.1% EM and +1.0% F1 over prior baselines.
- Score: 14.631028226704883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) has become a cornerstone technique for enhancing large language models (LLMs) with external knowledge. However, current RAG systems face two critical limitations: (1) they inefficiently retrieve information for every query, including simple questions that could be resolved using the LLM's parametric knowledge alone, and (2) they risk retrieving irrelevant documents when queries contain sparse information signals. To address these gaps, we introduce Parametric-verified Adaptive Information Retrieval and Selection (PAIRS), a training-free framework that integrates parametric and retrieved knowledge to adaptively determine whether to retrieve and how to select external information. Specifically, PAIRS employs a dual-path generation mechanism: First, the LLM produces both a direct answer and a context-augmented answer using self-generated pseudo-context. When these outputs converge, PAIRS bypasses external retrieval entirely, dramatically improving the RAG system's efficiency. For divergent cases, PAIRS activates a dual-path retrieval (DPR) process guided by both the original query and self-generated contextual signals, followed by an Adaptive Information Selection (AIS) module that filters documents through weighted similarity to both sources. This simple yet effective approach can not only enhance efficiency by eliminating unnecessary retrievals but also improve accuracy through contextually guided retrieval and adaptive information selection. Experimental results on six question-answering (QA) benchmarks show that PAIRS reduces retrieval costs by around 25% (triggering for only 75% of queries) while still improving accuracy-achieving +1.1% EM and +1.0% F1 over prior baselines on average.
Related papers
- Distilling a Small Utility-Based Passage Selector to Enhance Retrieval-Augmented Generation [77.07879255360342]
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating retrieved information.<n>In RAG, the emphasis has shifted to utility, which considers the usefulness of passages for generating accurate answers.<n>Our approach focuses on utility-based selection rather than ranking, enabling dynamic passage selection tailored to specific queries without the need for fixed thresholds.<n>Our experiments demonstrate that utility-based selection provides a flexible and cost-effective solution for RAG, significantly reducing computational costs while improving answer quality.
arXiv Detail & Related papers (2025-07-25T09:32:29Z) - LTRR: Learning To Rank Retrievers for LLMs [53.285436927963865]
We show that routing-based RAG systems can outperform the best single-retriever-based systems.<n>Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric.<n>As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach.
arXiv Detail & Related papers (2025-06-16T17:53:18Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.<n>SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.<n>We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation [3.294519547931054]
Retrieval-Augmented Generation (RAG) integrates non-parametric knowledge from external knowledge bases into models.<n>Existing RAG methods struggle with open-domain Question Answering (QA) tasks.<n>We propose Adaptive memory-based optimization for enhanced RAG for open-domain QA tasks.
arXiv Detail & Related papers (2025-02-19T04:23:12Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation has emerged as a powerful approach to mitigate large language model hallucinations.<n>Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.<n>We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection [72.92366526004464]
Retrieval-Augmented Generation (RAG) has proven effective in enabling Large Language Models (LLMs) to produce more accurate and reliable responses.<n>We propose a novel Self-Selection RAG framework, where the LLM is made to select from pairwise responses generated with internal parametric knowledge solely.
arXiv Detail & Related papers (2025-02-10T04:29:36Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
Large Language Models (LLMs) are essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information.<n>Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses.<n>To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG)<n>MAIN-RAG is a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents.
arXiv Detail & Related papers (2024-12-31T08:07:26Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems [2.8692611791027893]
Retrieval-Augmented Generation (RAG) systems generate inaccurate responses due to the retrieval of irrelevant or loosely related information.<n>We propose ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level.
arXiv Detail & Related papers (2024-10-25T14:07:53Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG) mitigates factual errors and hallucinations in Large Language Models (LLMs) for question-answering (QA)<n>We develop DeepNote, an adaptive RAG framework that achieves in-depth and robust exploration of knowledge sources through note-centric adaptive retrieval.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems [14.62114319247837]
Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses.
A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query.
These four RAG modules synergistically improve the response quality and efficiency of the RAG system.
arXiv Detail & Related papers (2024-07-15T12:35:00Z) - RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering [42.66223628527439]
Adaptive retrieval-augmented generation (ARAG) aims to dynamically determine the necessity of retrieval for queries instead of retrieving indiscriminately.
This work presents a benchmark, RetrievalQA, comprising 1,271 short-form questions covering new world and long-tail knowledge.
arXiv Detail & Related papers (2024-02-26T09:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.