LTRR: Learning To Rank Retrievers for LLMs
- URL: http://arxiv.org/abs/2506.13743v1
- Date: Mon, 16 Jun 2025 17:53:18 GMT
- Title: LTRR: Learning To Rank Retrievers for LLMs
- Authors: To Eun Kim, Fernando Diaz,
- Abstract summary: We show that routing-based RAG systems can outperform the best single-retriever-based systems.<n>Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric.<n>As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach.
- Score: 53.285436927963865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) systems typically rely on a single fixed retriever, despite growing evidence that no single retriever performs optimally across all query types. In this paper, we explore a query routing approach that dynamically selects from a pool of retrievers based on the query, using both train-free heuristics and learned routing models. We frame routing as a learning-to-rank (LTR) problem and introduce LTRR, a framework that learns to rank retrievers by their expected utility gain to downstream LLM performance. Our experiments, conducted on synthetic QA data with controlled query type variations, show that routing-based RAG systems can outperform the best single-retriever-based systems. Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric and with pairwise learning approaches, especially with XGBoost. We also observe improvements in generalization to out-of-distribution queries. As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach, achieving competitive performance in both answer correctness and faithfulness. These findings highlight the importance of both training methodology and metric selection in query routing for RAG systems.
Related papers
- Query Routing for Retrieval-Augmented Language Models [38.05904245087491]
Retrieval-Augmented Generation (RAG) significantly improves the performance of Large Language Models (LLMs) on knowledge-intensive tasks.<n>We observe that external documents dynamically affect LLM's ability to answer queries, while existing routing methods exhibit suboptimal performance in RAG scenarios.<n>We propose RAG, a parametric RAG-aware routing design, which leverages document embeddings and RAG capability embeddings with contrastive learning to capture knowledge representation shifts.
arXiv Detail & Related papers (2025-05-29T03:44:56Z) - CL-RAG: Bridging the Gap in Retrieval-Augmented Generation with Curriculum Learning [23.424936103502976]
Retrieval-Augmented Generation (RAG) is an effective method to enhance the capabilities of large language models (LLMs)<n>Existing methods focus on optimizing the retriever or generator in the RAG system by directly utilizing the top-k retrieved documents.<n>In this paper, we propose a multi-stage Curriculum Learning based RAG system training framework, named CL-RAG.
arXiv Detail & Related papers (2025-05-15T16:53:04Z) - Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models [83.8639566087953]
We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components.<n>DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted, progressively improving RAG components.<n>Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning.
arXiv Detail & Related papers (2025-05-05T23:54:53Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - MST-R: Multi-Stage Tuning for Retrieval Systems and Metric Evaluation [7.552430488883876]
We present a system that adapts the retriever performance to the target domain using a multi-stage tuning strategy.<n>We benchmark the system performance on the dataset released for the RIRAG challenge.<n>We achieve significant performance gains obtaining a top rank on the RegNLP challenge leaderboard.
arXiv Detail & Related papers (2024-12-13T17:53:29Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation [20.420575358183687]
Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs)
Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG.
We propose a novel framework, FiGRet, which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective.
arXiv Detail & Related papers (2024-11-06T14:42:39Z) - RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards [78.74923079748521]
Retrieval-Augmented Generation (RAG) has proven its effectiveness in mitigating hallucinations in Large Language Models (LLMs) by retrieving knowledge from external resources.<n>Current approaches use instruction tuning to optimize LLMs, improving their ability to utilize retrieved knowledge.<n>We propose a Differentiable Data Rewards ( DDR) method, which trains RAG systems by aligning data preferences between different RAG modules.
arXiv Detail & Related papers (2024-10-17T12:53:29Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
In this study, we introduce a framework that leverages Dual Queries and Low-rank approximation Re-ranking to automatically select exemplars for in-context learning.
DQ-LoRe significantly outperforms prior state-of-the-art methods in the automatic selection of exemplars for GPT-4, enhancing performance from 92.5% to 94.2%.
arXiv Detail & Related papers (2023-10-04T16:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.