Toward a Reasoning and Learning Architecture for Ad Hoc Teamwork
- URL: http://arxiv.org/abs/2208.11556v1
- Date: Wed, 24 Aug 2022 13:57:33 GMT
- Title: Toward a Reasoning and Learning Architecture for Ad Hoc Teamwork
- Authors: Hasra Dodampegama, Mohan Sridharan
- Abstract summary: We present an architecture for ad hoc teamwork, which refers to collaboration in a team of agents without prior coordination.
Our architecture combines the principles of knowledge-based and data-driven reasoning and learning.
We use the benchmark simulated multiagent collaboration domain Fort Attack to demonstrate that our architecture supports adaptation to unforeseen changes.
- Score: 4.454557728745761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an architecture for ad hoc teamwork, which refers to collaboration
in a team of agents without prior coordination. State of the art methods for
this problem often include a data-driven component that uses a long history of
prior observations to model the behaviour of other agents (or agent types) and
to determine the ad hoc agent's behavior. In many practical domains, it is
challenging to find large training datasets, and necessary to understand and
incrementally extend the existing models to account for changes in team
composition or domain attributes. Our architecture combines the principles of
knowledge-based and data-driven reasoning and learning. Specifically, we enable
an ad hoc agent to perform non-monotonic logical reasoning with prior
commonsense domain knowledge and incrementally-updated simple predictive models
of other agents' behaviour. We use the benchmark simulated multiagent
collaboration domain Fort Attack to demonstrate that our architecture supports
adaptation to unforeseen changes, incremental learning and revision of models
of other agents' behaviour from limited samples, transparency in the ad hoc
agent's decision making, and better performance than a data-driven baseline.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Knowledge-based Reasoning and Learning under Partial Observability in Ad
Hoc Teamwork [4.454557728745761]
This paper introduces an architecture that determines an ad hoc agent's behavior based on non-monotonic logical reasoning.
It supports online selection, adaptation, and learning of the models that predict the other agents' behavior.
We show that the performance of our architecture is comparable or better than state of the art data-driven baselines in both simple and complex scenarios.
arXiv Detail & Related papers (2023-06-01T15:21:27Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains.
Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or models, and can be trained using entirely offline observational data.
arXiv Detail & Related papers (2022-06-17T23:07:33Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
The optimal adaptive behaviour under uncertainty over the other agents' strategies can be computed using the Interactive Bayesian Reinforcement Learning framework.
We propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior.
We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.
arXiv Detail & Related papers (2021-01-11T13:25:13Z) - Agent Modelling under Partial Observability for Deep Reinforcement
Learning [12.903487594031276]
Existing methods for agent modelling assume knowledge of the local observations and chosen actions of the modelled agents during execution.
We learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent.
The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning.
arXiv Detail & Related papers (2020-06-16T18:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.