Graph Representation Learning with Massive Unlabeled Data for Rumor Detection
- URL: http://arxiv.org/abs/2508.04252v1
- Date: Wed, 06 Aug 2025 09:33:56 GMT
- Title: Graph Representation Learning with Massive Unlabeled Data for Rumor Detection
- Authors: Chaoqun Cui, Caiyan Jia,
- Abstract summary: We use large-scale unlabeled topic datasets crawled from the social media platform Weibo and Twitter with claim propagation structure to improve the semantic learning ability of a graph reprentation learing model on various topics.<n>Our experiments show that these general graph self-supervised learning methods outperform previous methods specifically designed for rumor detection tasks.
- Score: 3.2803526084968904
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the development of social media, rumors spread quickly, cause great harm to society and economy. Thereby, many effective rumor detection methods have been developed, among which the rumor propagation structure learning based methods are particularly effective compared to other methods. However, the existing methods still suffer from many issues including the difficulty to obtain large-scale labeled rumor datasets, which leads to the low generalization ability and the performance degeneration on new events since rumors are time-critical and usually appear with hot topics or newly emergent events. In order to solve the above problems, in this study, we used large-scale unlabeled topic datasets crawled from the social media platform Weibo and Twitter with claim propagation structure to improve the semantic learning ability of a graph reprentation learing model on various topics. We use three typical graph self-supervised methods, InfoGraph, JOAO and GraphMAE in two commonly used training strategies, to verify the performance of general graph semi-supervised methods in rumor detection tasks. In addition, for alleviating the time and topic difference between unlabeled topic data and rumor data, we also collected a rumor dataset covering a variety of topics over a decade (10-year ago from 2022) from the Weibo rumor-refuting platform. Our experiments show that these general graph self-supervised learning methods outperform previous methods specifically designed for rumor detection tasks and achieve good performance under few-shot conditions, demonstrating the better generalization ability with the help of our massive unlabeled topic dataset.
Related papers
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
We propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance.<n>To adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated.<n>Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
arXiv Detail & Related papers (2024-11-20T00:43:32Z) - Semantic Evolvement Enhanced Graph Autoencoder for Rumor Detection [25.03964361177406]
We propose a novel semantic evolvement enhanced Graph Autoencoder for Rumor Detection (GARD) model in this paper.
The model learns semantic evolvement information of events by capturing local semantic changes and global semantic evolvement information.
In order to enhance the model's ability to learn the distinct patterns of rumors and non-rumors, we introduce a regularizer to further improve the model's performance.
arXiv Detail & Related papers (2024-04-24T05:05:58Z) - Rumor Detection with a novel graph neural network approach [12.42658463552019]
We propose a new detection model, that jointly learns the representations of user correlation and information propagation to detect rumors on social media.
Specifically, we leverage graph neural networks to learn the representations of user correlation from a bipartite graph.
We show that it requires a high cost for attackers to subvert user correlation pattern, demonstrating the importance of considering user correlation for rumor detection.
arXiv Detail & Related papers (2024-03-24T15:59:47Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.<n> graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.<n>We propose three simple but powerful graph convolution methods.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - A Unified Contrastive Transfer Framework with Propagation Structure for
Boosting Low-Resource Rumor Detection [11.201348902221257]
existing rumor detection algorithms show promising performance on yesterday's news.
Due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events.
We propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations.
arXiv Detail & Related papers (2023-04-04T03:13:03Z) - Model-Agnostic and Diverse Explanations for Streaming Rumour Graphs [39.88818563103125]
We argue that explanations for detected rumours may be given in terms of examples of related rumours detected in the past.
A diverse set of similar rumours helps users to generalize, i.e., to understand the properties that govern the detection of rumours.
arXiv Detail & Related papers (2022-07-17T07:13:27Z) - Geometer: Graph Few-Shot Class-Incremental Learning via Prototype
Representation [50.772432242082914]
Existing graph neural network based methods mainly focus on classifying unlabeled nodes within fixed classes with abundant labeling.
In this paper, we focus on this challenging but practical graph few-shot class-incremental learning (GFSCIL) problem and propose a novel method called Geometer.
Instead of replacing and retraining the fully connected neural network classifer, Geometer predicts the label of a node by finding the nearest class prototype.
arXiv Detail & Related papers (2022-05-27T13:02:07Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
We propose contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better.
We term this framework as Self-supervised Rumor Detection (SRD)
Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.
arXiv Detail & Related papers (2022-04-19T12:10:03Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - SRLF: A Stance-aware Reinforcement Learning Framework for Content-based
Rumor Detection on Social Media [15.985224010346593]
Early content-based methods focused on finding clues from text and user profiles for rumor detection.
Recent studies combine the stances of users' comments with news content to capture the difference between true and false rumors.
We propose a novel Stance-aware Reinforcement Learning Framework (SRLF) to select high-quality labeled stance data for model training and rumor detection.
arXiv Detail & Related papers (2021-05-10T03:58:34Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Rumor Detection on Social Media with Bi-Directional Graph Convolutional
Networks [89.13567439679709]
We propose a novel bi-directional graph model, named Bi-Directional Graph Convolutional Networks (Bi-GCN), to explore both characteristics by operating on both top-down and bottom-up propagation of rumors.
It leverages a GCN with a top-down directed graph of rumor spreading to learn the patterns of rumor propagation, and a GCN with an opposite directed graph of rumor diffusion to capture the structures of rumor dispersion.
arXiv Detail & Related papers (2020-01-17T15:12:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.