Semantic Evolvement Enhanced Graph Autoencoder for Rumor Detection
- URL: http://arxiv.org/abs/2404.16076v1
- Date: Wed, 24 Apr 2024 05:05:58 GMT
- Title: Semantic Evolvement Enhanced Graph Autoencoder for Rumor Detection
- Authors: Xiang Tao, Liang Wang, Qiang Liu, Shu Wu, Liang Wang,
- Abstract summary: We propose a novel semantic evolvement enhanced Graph Autoencoder for Rumor Detection (GARD) model in this paper.
The model learns semantic evolvement information of events by capturing local semantic changes and global semantic evolvement information.
In order to enhance the model's ability to learn the distinct patterns of rumors and non-rumors, we introduce a regularizer to further improve the model's performance.
- Score: 25.03964361177406
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the rapid spread of rumors on social media, rumor detection has become an extremely important challenge. Recently, numerous rumor detection models which utilize textual information and the propagation structure of events have been proposed. However, these methods overlook the importance of semantic evolvement information of event in propagation process, which is often challenging to be truly learned in supervised training paradigms and traditional rumor detection methods. To address this issue, we propose a novel semantic evolvement enhanced Graph Autoencoder for Rumor Detection (GARD) model in this paper. The model learns semantic evolvement information of events by capturing local semantic changes and global semantic evolvement information through specific graph autoencoder and reconstruction strategies. By combining semantic evolvement information and propagation structure information, the model achieves a comprehensive understanding of event propagation and perform accurate and robust detection, while also detecting rumors earlier by capturing semantic evolvement information in the early stages. Moreover, in order to enhance the model's ability to learn the distinct patterns of rumors and non-rumors, we introduce a uniformity regularizer to further improve the model's performance. Experimental results on three public benchmark datasets confirm the superiority of our GARD method over the state-of-the-art approaches in both overall performance and early rumor detection.
Related papers
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
We propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance.
To adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated.
Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
arXiv Detail & Related papers (2024-11-20T00:43:32Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - A Unified Contrastive Transfer Framework with Propagation Structure for
Boosting Low-Resource Rumor Detection [11.201348902221257]
existing rumor detection algorithms show promising performance on yesterday's news.
Due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events.
We propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations.
arXiv Detail & Related papers (2023-04-04T03:13:03Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Zero-Shot Rumor Detection with Propagation Structure via Prompt Learning [24.72097408129496]
Previous studies reveal that due to the lack of annotated resources, rumors presented in minority languages are hard to be detected.
We propose a novel framework based on prompt learning to detect rumors falling in different domains or presented in different languages.
Our proposed model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
arXiv Detail & Related papers (2022-12-02T12:04:48Z) - Region-enhanced Deep Graph Convolutional Networks for Rumor Detection [6.5165993338043995]
A novel region-enhanced deep graph convolutional network (RDGCN) that enhances the propagation features of rumors is proposed.
Experiments on Twitter15 and Twitter16 show that the proposed model performs better than the baseline approach on rumor detection and early rumor detection.
arXiv Detail & Related papers (2022-06-15T17:00:11Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.