論文の概要: Deliberative Reasoning Network: An Uncertainty-Driven Paradigm for Belief-Tracked Inference with Pretrained Language Models
- arxiv url: http://arxiv.org/abs/2508.04339v1
- Date: Wed, 06 Aug 2025 11:33:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.694426
- Title: Deliberative Reasoning Network: An Uncertainty-Driven Paradigm for Belief-Tracked Inference with Pretrained Language Models
- Title(参考訳): Deliberative Reasoning Network: 事前訓練された言語モデルによる推論のための不確かさ駆動のパラダイム
- Authors: Anran Xu, Jincheng Wang, Baigen Cai, Tao Wen,
- Abstract要約: Deliberative Reasoning Network (DRN) は、確率から不確実性への論理的推論を再構成する新しいパラダイムである。
DRNは、信念状態を明示的に追跡し、競合する仮説の不確実性を定量化することによって、本質的な解釈可能性を達成する。
我々は、DRNを、より信頼できるAIシステムを構築するための、基礎的で検証可能なシステム2推論コンポーネントとして位置付ける。
- 参考スコア(独自算出の注目度): 7.095344389368656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models often fail at logical reasoning when semantic heuristics conflict with decisive evidence - a phenomenon we term cognitive traps. To address this fundamental limitation, we introduce the Deliberative Reasoning Network (DRN), a novel paradigm that reframes logical reasoning from probability maximization to uncertainty minimization. Instead of asking "Which answer is most likely?", DRN asks "Which hypothesis has the most internally consistent evidence?". DRN achieves intrinsic interpretability by explicitly tracking belief states and quantifying epistemic uncertainty for competing hypotheses through an iterative evidence synthesis process. We validate our approach through two complementary architectures - a bespoke discriminative model that embodies the core uncertainty minimization principle, and a lightweight verification module that enhances existing generative LLMs. Evaluated on LCR-1000, our new adversarial reasoning benchmark designed to expose cognitive traps, the bespoke DRN achieves up to 15.2% improvement over standard baselines. When integrated as a parameter-efficient verifier with Mistral-7B, our hybrid system boosts accuracy from 20% to 80% on the most challenging problems. Critically, DRN demonstrates strong zero-shot generalization, improving TruthfulQA performance by 23.6% without additional training, indicating that uncertainty-driven deliberation learns transferable reasoning principles. We position DRN as a foundational, verifiable System 2 reasoning component for building more trustworthy AI systems.
- Abstract(参考訳): 大きな言語モデルは、意味的ヒューリスティックスが決定的な証拠と矛盾する場合、しばしば論理的推論で失敗する。
この基本的な制限に対処するために、確率最大化から不確実性最小化への論理的推論を再構成する新しいパラダイムであるDeliberative Reasoning Network (DRN)を導入する。
DRN は "Which answer is most likely?" と尋ねる代わりに "Which hypothesis have the most internal consistent evidence?
DRNは、信念状態を明示的に追跡し、反復的エビデンス合成プロセスを通じて競合する仮説に対する疫学的な不確実性を定量化し、本質的な解釈可能性を達成する。
我々は,コア不確かさの最小化原理を具現化した,不確実な識別モデルと,既存のジェネレーティブLLMを強化する軽量な検証モジュールという,2つの相補的アーキテクチャによるアプローチを検証する。
認知的トラップを明らかにするために設計された新しい逆推論ベンチマークであるLCR-1000を評価したところ、DRNは標準ベースラインよりも最大15.2%改善した。
Mistral-7Bをパラメータ効率検証器として統合すると、最も難しい問題に対して、我々のハイブリッドシステムは精度を20%から80%に向上させる。
批判的に、DRNは強力なゼロショットの一般化を示し、追加のトレーニング無しでTrathfulQAのパフォーマンスを23.6%向上させ、不確実性駆動による検討が伝達可能な推論原理を学ぶことを示唆している。
我々は、DRNを、より信頼できるAIシステムを構築するための、基礎的で検証可能なシステム2推論コンポーネントとして位置付ける。
関連論文リスト
- Trustworthy Reasoning: Evaluating and Enhancing Factual Accuracy in LLM Intermediate Thought Processes [16.451488374845407]
本稿では,Large Language Models(LLMs)における重大な脆弱性に対処する新しいフレームワークを提案する。
この現象は、医療、法的な分析、科学研究など、高度な領域に重大なリスクをもたらす。
論文 参考訳(メタデータ) (2025-07-25T10:34:51Z) - Deep Hidden Cognition Facilitates Reliable Chain-of-Thought Reasoning [33.30315111732609]
Chain of Thought (CoT)推論は驚くほど深い推論能力を示している。
しかし、その信頼性はしばしば中間段階のエラーの蓄積によって損なわれる。
本稿では,本モデルの固有精度符号化を利用したCoT推論精度の校正手法を提案する。
論文 参考訳(メタデータ) (2025-07-14T07:41:35Z) - Lost at the Beginning of Reasoning [82.18834329384514]
第1の推論ステップが最終予測に不当に大きな影響を与えることを示す。
本稿では、報酬モデルを利用して高品質な第1推論ステップを特定し、維持する効率的なサンプリング戦略を提案する。
モデル自己補正能力を体系的に評価するために、意図的に欠陥のある第1の推論ステップで構築された新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-06-27T09:53:57Z) - TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
本稿では,共変量および意味的シフトの両条件下での拒絶による分類を統一し,促進する,単純な故障検出フレームワークを提案する。
キーとなる洞察は、障害固有の信頼性知識を低ランクアダプタで分離し、統合することにより、障害検出能力を効果的かつ柔軟に向上できるということです。
論文 参考訳(メタデータ) (2025-04-20T09:20:55Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
大規模言語モデル(LLM)は、不一致の自己認識に起因する幻覚の傾向にある。
本稿では,高速かつ低速な推論システムを統合し,信頼性とユーザビリティを調和させる明示的知識境界モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-04T03:16:02Z) - Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
パープレキシティや自己整合性などの手法の第一理論誤差分解解析について述べる。
パープレキシティ法は、適切な整合関数が存在しないため、かなりのモデル誤差に悩まされる。
本稿では、自己整合性とパープレキシティを統合したReasoning-Pruning Perplexity Consistency(RPC)と、低確率推論経路を排除したReasoning Pruningを提案する。
論文 参考訳(メタデータ) (2025-02-01T18:09:49Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Explicit Tradeoffs between Adversarial and Natural Distributional
Robustness [48.44639585732391]
実際、モデルは信頼性を確保するために両方のタイプの堅牢さを享受する必要があります。
本研究では, 対角線と自然分布の強靭性の間には, 明らかなトレードオフが存在することを示す。
論文 参考訳(メタデータ) (2022-09-15T19:58:01Z) - Evaluate Confidence Instead of Perplexity for Zero-shot Commonsense
Reasoning [85.1541170468617]
本稿では,コモンセンス推論の性質を再考し,新しいコモンセンス推論尺度であるNon-Replacement Confidence(NRC)を提案する。
提案手法は,2つのコモンセンス推論ベンチマークデータセットと,さらに7つのコモンセンス質問応答データセットに対してゼロショット性能を向上する。
論文 参考訳(メタデータ) (2022-08-23T14:42:14Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。