論文の概要: Small transformer architectures for task switching
- arxiv url: http://arxiv.org/abs/2508.04461v1
- Date: Wed, 06 Aug 2025 14:01:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.747465
- Title: Small transformer architectures for task switching
- Title(参考訳): タスク切替のための小型トランスアーキテクチャ
- Authors: Claudius Gros,
- Abstract要約: 注意に基づくアーキテクチャが従来のアプローチより優れていると考えるのは簡単ではない。
標準変圧器は基本的タスク切替参照モデルでは解けないことを示す。
本研究では, トランス, 長期記憶再帰ネットワーク (LSTM) , 平板多層パーセプトロン (MLP) が類似しているが, 予測精度は緩やかであることを示す。
- 参考スコア(独自算出の注目度): 2.7195102129095003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress seen in terms of large-scale generative AI is largely based on the attention mechanism. It is conversely non-trivial to conceive small-scale applications for which attention-based architectures outperform traditional approaches, such as multi-layer perceptrons or recurrent networks. We examine this problem in the context of 'task switching'. In this framework models work on ongoing token sequences with the current task being determined by stochastically interspersed control tokens. We show that standard transformers cannot solve a basic task switching reference model based on finite domain arithmetics which contains subtasks dedicated to increment / addition / reverse copy / context (IARC). We show that transformers, long short-term memory recurrent networks (LSTM), and plain multi-layer perceptrons (MLPs) achieve similar, but only modest prediction accuracies. We enlarge our comparative study by including an extension of the standard transformer architecture to its non-translational invariant counterpart, the cisformer, and an alternative attention mechanism, extensive attention. A combination of the latter is found to be the only model able to achieve considerable performance levels, of around 95%. Our results indicate that the workings of attention can be understood better, and even improved, when comparing qualitatively different formulations in task-switching settings.
- Abstract(参考訳): 大規模生成AIの観点から見た急速な進歩は、主に注意機構に基づいている。
逆に、マルチ層パーセプトロンやリカレントネットワークといった従来のアプローチよりも注目に基づくアーキテクチャの方が優れているという、小規模アプリケーションを考えるのは簡単ではない。
この問題を「タスクスイッチング」の文脈で検討する。
このフレームワークでは、現在のタスクは確率的に分散された制御トークンによって決定される。
インクリメント/加算/逆コピー/コンテキスト(IARC)専用のサブタスクを含む有限領域演算をベースとした基本タスク切替参照モデルでは,標準トランスフォーマーでは解決できないことを示す。
本研究では, トランス, 長期記憶再帰ネットワーク (LSTM) , 平板多層パーセプトロン (MLP) が類似しているが, 予測精度は緩やかであることを示す。
我々は、標準変圧器アーキテクチャを、その非翻訳不変量であるシスフォーマに拡張することで、比較研究を拡大し、代替の注意機構、広範囲な注意を喚起する。
後者の組み合わせは、95%程度の性能レベルを達成できる唯一のモデルであることが判明した。
その結果,タスクスイッチング設定における定性的に異なる定性的な定式化を比較することで,注意の働きをよりよく理解し,さらに改善できることが示唆された。
関連論文リスト
- Is Attention Required for Transformer Inference? Explore Function-preserving Attention Replacement [13.38679135071682]
本稿では,事前学習したトランスフォーマーのすべての注意ブロックを学習可能なシーケンス・ツー・シーケンスモジュールに置き換える機能保存型アテンション・リプレースメントフレームワークを提案する。
DeiTビジョントランスファミリ上でFARを検証し、ImageNet上の元のモデルの精度と、パラメータとレイテンシを低減した複数の下流タスクとを一致させることを実証する。
論文 参考訳(メタデータ) (2025-05-24T02:23:46Z) - Token Statistics Transformer: Linear-Time Attention via Variational Rate Reduction [29.12836710966048]
本稿では,トークン数に応じて計算複雑性が線形にスケールする新しいトランスフォーマーアテンション演算子を提案する。
本研究は, トランスフォーマーアーキテクチャの成功に対して, ペアワイズ類似性スタイルの注意機構が重要であるという従来の知恵に疑問を投げかけるものである。
論文 参考訳(メタデータ) (2024-12-23T18:59:21Z) - Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers [56.264673865476986]
本稿では、Transformerモデルを強化するためのSLA(Skip-Layer Attention)を提案する。
SLAは、高レベルの抽象機能と低レベルの詳細の間の依存関係をキャプチャするモデルの能力を改善します。
我々の実装は、与えられたレイヤ内のクエリが、現在のレイヤと前のレイヤの両方のキーと値とやり取りできるようにすることで、Transformerの機能を拡張します。
論文 参考訳(メタデータ) (2024-06-17T07:24:38Z) - NiNformer: A Network in Network Transformer with Token Mixing Generated Gating Function [1.3812010983144802]
本稿では、Vision Transformer ViTブロックの代替として、新しい計算ブロックを提案する。
新たに提案したブロックは、通常の注意層をネットワーク構造に置き換えることで、計算要求を減らす。
ビジョンドメインの画像分類タスクに適用される複数のデータセットのベースラインアーキテクチャよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-04T19:08:20Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
本稿では,特徴量依存を効率的に捕捉し,既存のトランスフォーマーのエンコーダブロックにシームレスに統合できる新しいアテンション機構を提案する。
特に、関連性のある注意は、特徴チャネルを横断して、クエリとキー間の相互共分散行列をラグ値で計算し、サブシリーズレベルで選択的に表現を集約する。
このアーキテクチャは、瞬時だけでなく、ラタグされた相互相関の発見と表現の学習を容易にすると同時に、本質的に時系列の自動相関をキャプチャする。
論文 参考訳(メタデータ) (2023-11-20T17:35:44Z) - Rethinking Attention: Exploring Shallow Feed-Forward Neural Networks as
an Alternative to Attention Layers in Transformers [5.356051655680145]
本研究は,従来のトランスフォーマーモデルにおけるアテンション機構の動作を模倣するために,標準の浅層フィードフォワードネットワークを用いることの有効性について分析した。
我々はトランスフォーマーの注意機構の重要な要素を簡単なフィードフォワードネットワークで置き換え、知識蒸留により元のコンポーネントを用いて訓練する。
IWSLT 2017データセットで実施した実験では,これらの“アテンションレストランスフォーマー(attentionless Transformers)”の能力が,オリジナルのアーキテクチャのパフォーマンスに匹敵することを示した。
論文 参考訳(メタデータ) (2023-11-17T16:58:52Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
本稿では,密集自己注意の代替として,コンテンツに基づくスパースアテンション手法を提案する。
具体的には、合計トークン数を減少させるコンテンツベースの方法として、キーとバリュートークンをクラスタ化し、集約する。
結果として得られたクラスタ化されたTokenシーケンスは、元の信号のセマンティックな多様性を保持するが、より少ない計算コストで処理できる。
論文 参考訳(メタデータ) (2022-08-28T04:18:27Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z) - Visual Saliency Transformer [127.33678448761599]
RGBとRGB-Dの液状物体検出(SOD)のための、純粋な変圧器であるVST(Visual Saliency Transformer)に基づく新しい統一モデルを開発しました。
イメージパッチを入力として取り、トランスフォーマーを利用してイメージパッチ間のグローバルコンテキストを伝搬する。
実験結果から,RGBとRGB-D SODのベンチマークデータセットにおいて,本モデルが既存の最新結果を上回っていることが示された。
論文 参考訳(メタデータ) (2021-04-25T08:24:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。