InceptoFormer: A Multi-Signal Neural Framework for Parkinson's Disease Severity Evaluation from Gait
- URL: http://arxiv.org/abs/2508.04540v1
- Date: Wed, 06 Aug 2025 15:27:11 GMT
- Title: InceptoFormer: A Multi-Signal Neural Framework for Parkinson's Disease Severity Evaluation from Gait
- Authors: Safwen Naimi, Arij Said, Wassim Bouachir, Guillaume-Alexandre Bilodeau,
- Abstract summary: InceptoFormer is a multi-signal neural framework designed for Parkinson's Disease (PD) severity evaluation via gait dynamics analysis.<n>Our architecture introduces a 1D adaptation of the Inception model, which we refer to as Inception1D, along with a Transformer-based framework to stage PD severity according to the Hoehn and Yahr (H&Y) scale.<n>InceptoFormer achieves an accuracy of 96.6%, outperforming existing state-of-the-art methods in PD severity assessment.
- Score: 6.155129200870887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present InceptoFormer, a multi-signal neural framework designed for Parkinson's Disease (PD) severity evaluation via gait dynamics analysis. Our architecture introduces a 1D adaptation of the Inception model, which we refer to as Inception1D, along with a Transformer-based framework to stage PD severity according to the Hoehn and Yahr (H&Y) scale. The Inception1D component captures multi-scale temporal features by employing parallel 1D convolutional filters with varying kernel sizes, thereby extracting features across multiple temporal scales. The transformer component efficiently models long-range dependencies within gait sequences, providing a comprehensive understanding of both local and global patterns. To address the issue of class imbalance in PD severity staging, we propose a data structuring and preprocessing strategy based on oversampling to enhance the representation of underrepresented severity levels. The overall design enables to capture fine-grained temporal variations and global dynamics in gait signal, significantly improving classification performance for PD severity evaluation. Through extensive experimentation, InceptoFormer achieves an accuracy of 96.6%, outperforming existing state-of-the-art methods in PD severity assessment. The source code for our implementation is publicly available at https://github.com/SafwenNaimi/InceptoFormer
Related papers
- UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model [53.34835793648352]
We propose UniSegDiff, a novel diffusion model framework for lesion segmentation.<n>UniSegDiff addresses lesion segmentation in a unified manner across multiple modalities and organs.<n> Comprehensive experimental results demonstrate that UniSegDiff significantly outperforms previous state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2025-07-24T12:33:10Z) - Improving Progressive Generation with Decomposable Flow Matching [50.63174319509629]
Decomposable Flow Matching (DFM) is a simple and effective framework for the progressive generation of visual media.<n>On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline.
arXiv Detail & Related papers (2025-06-24T17:58:02Z) - Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model [35.91741991271154]
distortion-perception tradeoff reveals a fundamental conflict between distortion metrics and perceptual quality.<n>We show that a single score network can effectively and flexibly traverse the DP tradeoff for general denoising problems.
arXiv Detail & Related papers (2025-03-26T07:37:53Z) - Resolve Domain Conflicts for Generalizable Remote Physiological Measurement [39.0083078989343]
We introduce the DOmain-Honious framework (DOHA) for remote photoplethysmography.
We propose a phase strategy to eliminate uncertain phase delays and preserve the variation of physiological signals.
Next, we design a hyperplane optimization that reduces irrelevant attribute shifts.
Our experiments significantly improve the performance of existing methods under multiple protocols.
arXiv Detail & Related papers (2024-04-11T15:51:52Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - 1D-Convolutional transformer for Parkinson disease diagnosis from gait [7.213855322671065]
This paper presents an efficient deep neural network model for diagnosing Parkinson's disease from gait.
We introduce a hybrid ConvNetTransform-er architecture to accurately diagnose the disease by detecting the severity stage.
Our experimental results show that our approach is effective for detecting the different stages of Parkinson's disease from gait data.
arXiv Detail & Related papers (2023-11-06T15:17:17Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Fourier Test-time Adaptation with Multi-level Consistency for Robust
Classification [10.291631977766672]
We propose a novel approach called Fourier Test-time Adaptation (FTTA) to integrate input and model tuning.
FTTA builds a reliable multi-level consistency measurement of paired inputs for achieving self-supervised of prediction.
It was extensively validated on three large classification datasets with different modalities and organs.
arXiv Detail & Related papers (2023-06-05T02:29:38Z) - f-DM: A Multi-stage Diffusion Model via Progressive Signal
Transformation [56.04628143914542]
Diffusion models (DMs) have recently emerged as SoTA tools for generative modeling in various domains.
We propose f-DM, a generalized family of DMs which allows progressive signal transformation.
We apply f-DM in image generation tasks with a range of functions, including down-sampling, blurring, and learned transformations.
arXiv Detail & Related papers (2022-10-10T18:49:25Z) - SUMD: Super U-shaped Matrix Decomposition Convolutional neural network
for Image denoising [0.0]
We introduce the matrix decomposition module(MD) in the network to establish the global context feature.
Inspired by the design of multi-stage progressive restoration of U-shaped architecture, we further integrate the MD module into the multi-branches.
Our model(SUMD) can produce comparable visual quality and accuracy results with Transformer-based methods.
arXiv Detail & Related papers (2022-04-11T04:38:34Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online
Adaptation [87.85851771425325]
We consider a new problem of adapting a human mesh reconstruction model to out-of-domain streaming videos.
We tackle this problem through online adaptation, gradually correcting the model bias during testing.
We propose the Dynamic Bilevel Online Adaptation algorithm (DynaBOA)
arXiv Detail & Related papers (2021-11-07T07:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.