Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2508.04575v1
- Date: Wed, 06 Aug 2025 15:59:18 GMT
- Title: Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration
- Authors: Nuo Chen, Yicheng Tong, Jiaying Wu, Minh Duc Duong, Qian Wang, Qingyun Zou, Bryan Hooi, Bingsheng He,
- Abstract summary: This paper investigates whether structured multi-agent discussions can surpass solitary ideation.<n>We propose a cooperative multi-agent framework for generating research proposals.<n>We employ a comprehensive protocol with agent-based scoring and human review across dimensions such as novelty, strategic vision, and integration depth.
- Score: 59.41889496960302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While AI agents show potential in scientific ideation, most existing frameworks rely on single-agent refinement, limiting creativity due to bounded knowledge and perspective. Inspired by real-world research dynamics, this paper investigates whether structured multi-agent discussions can surpass solitary ideation. We propose a cooperative multi-agent framework for generating research proposals and systematically compare configurations including group size, leaderled versus leaderless structures, and team compositions varying in interdisciplinarity and seniority. To assess idea quality, we employ a comprehensive protocol with agent-based scoring and human review across dimensions such as novelty, strategic vision, and integration depth. Our results show that multi-agent discussions substantially outperform solitary baselines. A designated leader acts as a catalyst, transforming discussion into more integrated and visionary proposals. Notably, we find that cognitive diversity is a primary driver of quality, yet expertise is a non-negotiable prerequisite, as teams lacking a foundation of senior knowledge fail to surpass even a single competent agent. These findings offer actionable insights for designing collaborative AI ideation systems and shed light on how team structure influences creative outcomes.
Related papers
- Exploring Design of Multi-Agent LLM Dialogues for Research Ideation [4.561804070932164]
Large language models (LLMs) are increasingly used to support creative tasks such as research idea generation.<n>We compare different configurations of agent roles, number of agents, and dialogue depth to understand how these factors influence the novelty and feasibility of generated ideas.
arXiv Detail & Related papers (2025-07-11T06:53:46Z) - Topological Structure Learning Should Be A Research Priority for LLM-Based Multi-Agent Systems [30.49725326159972]
Large Language Model-based Multi-Agent Systems (MASs) have emerged as a powerful paradigm for tackling complex tasks through collaborative intelligence.<n>The question of how agents should be structurally organized for optimal cooperation remains largely unexplored.<n>We introduce a systematic, three-stage framework: agent selection, structure profiling, and topology synthesis.
arXiv Detail & Related papers (2025-05-28T15:20:09Z) - Creativity in LLM-based Multi-Agent Systems: A Survey [56.25583236738877]
Large language model (LLM)-driven multi-agent systems (MAS) are transforming how humans and AIs collaboratively generate ideas and artifacts.<n>This is the first survey dedicated to creativity in MAS.<n>We focus on text and image generation tasks, and present: (1) a taxonomy of agent proactivity and persona design; (2) an overview of generation techniques, including divergent exploration, iterative refinement, and collaborative synthesis, as well as relevant datasets and evaluation metrics; and (3) a discussion of key challenges, such as inconsistent evaluation standards, insufficient bias mitigation, coordination conflicts, and the lack of unified benchmarks.
arXiv Detail & Related papers (2025-05-27T12:36:14Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.<n>This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures.<n>It explores self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities.<n>It also examines the collective intelligence emerging from agent interactions, cooperation, and societal structures.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Persona Inconstancy in Multi-Agent LLM Collaboration: Conformity, Confabulation, and Impersonation [16.82101507069166]
Multi-agent AI systems can be used for simulating collective decision-making in scientific and practical applications.
We examine AI agent ensembles engaged in cross-national collaboration and debate by analyzing their private responses and chat transcripts.
Our findings suggest that multi-agent discussions can support collective AI decisions that more often reflect diverse perspectives.
arXiv Detail & Related papers (2024-05-06T21:20:35Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.