Topological Structure Learning Should Be A Research Priority for LLM-Based Multi-Agent Systems
- URL: http://arxiv.org/abs/2505.22467v2
- Date: Thu, 29 May 2025 04:17:13 GMT
- Title: Topological Structure Learning Should Be A Research Priority for LLM-Based Multi-Agent Systems
- Authors: Jiaxi Yang, Mengqi Zhang, Yiqiao Jin, Hao Chen, Qingsong Wen, Lu Lin, Yi He, Weijie Xu, James Evans, Jindong Wang,
- Abstract summary: Large Language Model-based Multi-Agent Systems (MASs) have emerged as a powerful paradigm for tackling complex tasks through collaborative intelligence.<n>The question of how agents should be structurally organized for optimal cooperation remains largely unexplored.<n>We introduce a systematic, three-stage framework: agent selection, structure profiling, and topology synthesis.
- Score: 30.49725326159972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model-based Multi-Agent Systems (MASs) have emerged as a powerful paradigm for tackling complex tasks through collaborative intelligence. Nevertheless, the question of how agents should be structurally organized for optimal cooperation remains largely unexplored. In this position paper, we aim to gently redirect the focus of the MAS research community toward this critical dimension: develop topology-aware MASs for specific tasks. Specifically, the system consists of three core components - agents, communication links, and communication patterns - that collectively shape its coordination performance and efficiency. To this end, we introduce a systematic, three-stage framework: agent selection, structure profiling, and topology synthesis. Each stage would trigger new research opportunities in areas such as language models, reinforcement learning, graph learning, and generative modeling; together, they could unleash the full potential of MASs in complicated real-world applications. Then, we discuss the potential challenges and opportunities in the evaluation of multiple systems. We hope our perspective and framework can offer critical new insights in the era of agentic AI.
Related papers
- Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration [59.41889496960302]
This paper investigates whether structured multi-agent discussions can surpass solitary ideation.<n>We propose a cooperative multi-agent framework for generating research proposals.<n>We employ a comprehensive protocol with agent-based scoring and human review across dimensions such as novelty, strategic vision, and integration depth.
arXiv Detail & Related papers (2025-08-06T15:59:18Z) - From Standalone LLMs to Integrated Intelligence: A Survey of Compound Al Systems [6.284317913684068]
Compound Al Systems (CAIS) is an emerging paradigm that integrates large language models (LLMs) with external components, such as retrievers, agents, tools, and orchestrators.<n>Despite growing adoption in both academia and industry, the CAIS landscape remains fragmented, lacking a unified framework for analysis, taxonomy, and evaluation.<n>This survey aims to provide researchers and practitioners with a comprehensive foundation for understanding, developing, and advancing the next generation of system-level artificial intelligence.
arXiv Detail & Related papers (2025-06-05T02:34:43Z) - An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems [40.53603737069306]
Multi-agent AI systems (MAS) offer a promising framework for distributed intelligence, enabling collaborative reasoning, planning, and decision-making across autonomous agents.<n>This paper provides a systematic outlook on the current opportunities and challenges of MAS, drawing insights from recent advances in large language models (LLMs), federated optimization, and human-AI interaction.
arXiv Detail & Related papers (2025-05-23T22:05:19Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.<n>This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Why Do Multi-Agent LLM Systems Fail? [91.39266556855513]
We present MAST (Multi-Agent System Failure taxonomy), the first empirically grounded taxonomy designed to understand MAS failures.<n>We analyze seven popular MAS frameworks across over 200 tasks, involving six expert human annotators.<n>We identify 14 unique failure modes, organized into 3 overarching categories, (i) specification issues, (ii) inter-agent misalignment, and (iii) task verification.
arXiv Detail & Related papers (2025-03-17T19:04:38Z) - Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems [23.379992200838053]
Large language model-based multi-agent systems have recently gained significant attention due to their potential for complex, collaborative, and intelligent problem-solving capabilities.<n>Existing surveys typically categorize LLM-MAS according to their application domains or architectures, overlooking the central role of communication in coordinating agent behaviors and interactions.<n>This review aims to help researchers and practitioners gain a clear understanding of the communication mechanisms in LLM-MAS, thereby facilitating the design and deployment of robust, scalable, and secure multi-agent systems.
arXiv Detail & Related papers (2025-02-20T07:18:34Z) - Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review [32.73711802351707]
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address real-world challenges.<n>Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving.<n>This survey provides a systematic examination of how EMAS can benefit from these generative capabilities.
arXiv Detail & Related papers (2025-02-17T07:39:34Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively.<n>This work provides an extensive survey of the collaborative aspect of MASs and introduces a framework to guide future research.
arXiv Detail & Related papers (2025-01-10T19:56:50Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
Large language models (LLMs) have revolutionized the field of artificial intelligence, endowing it with sophisticated language understanding and generation capabilities.
This paper proposes a comprehensive multi-dimensional taxonomy to analyze how autonomous LLM-powered multi-agent systems balance the dynamic interplay between autonomy and alignment.
arXiv Detail & Related papers (2023-10-05T16:37:29Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.