論文の概要: X-SAM: From Segment Anything to Any Segmentation
- arxiv url: http://arxiv.org/abs/2508.04655v1
- Date: Wed, 06 Aug 2025 17:19:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.845249
- Title: X-SAM: From Segment Anything to Any Segmentation
- Title(参考訳): X-SAM: セグメンテーションからセグメンテーションまで
- Authors: Hao Wang, Limeng Qiao, Zequn Jie, Zhijian Huang, Chengjian Feng, Qingfang Zheng, Lin Ma, Xiangyuan Lan, Xiaodan Liang,
- Abstract要約: 大きな言語モデル(LLM)は、広い知識表現において強力な能力を示すが、本質的にはピクセルレベルの知覚的理解において不十分である。
テキスト化からテキスト化まで,セグメンテーションパラダイムを拡張したマルチモーダル大規模言語モデルフレームワークであるX-SAMを提案する。
インタラクティブな視覚的プロンプトで全てのインスタンスオブジェクトをセグメンテーションし、視覚的グラウンドでピクセルワイドな解釈能力を持つMLLMに権限を与える、Visual GrounDed (VGD)セグメンテーションと呼ばれる新しいセグメンテーションタスクを提案する。
- 参考スコア(独自算出の注目度): 63.79182974315084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
- Abstract(参考訳): 大きな言語モデル(LLM)は、広い知識表現において強力な能力を示すが、本質的にはピクセルレベルの知覚的理解において不十分である。
SAM(Segment Anything Model)は、視覚プロンプト駆動のイメージセグメンテーションの大幅な進歩を示すが、マルチマスク予測やカテゴリ固有のセグメンテーションタスクに顕著な制限があり、統一されたモデルアーキテクチャにすべてのセグメンテーションタスクを統合することはできない。
これらの制約に対処するため、X-SAMは、Segrationパラダイムを \textit{segment anything} から \textit{any segmentation} に拡張した、合理化されたMultimodal Large Language Model (MLLM) フレームワークである。
具体的には,MLLMのより高度な知覚理解を可能にする,新しい統合フレームワークを提案する。
さらに、インタラクティブな視覚的プロンプトで全てのインスタンスオブジェクトをセグメンテーションし、視覚的グラウンドでピクセルワイズな解釈能力を持つMLLMに権限を与える、Visual GrounDed (VGD)セグメンテーションと呼ばれる新しいセグメンテーションタスクを提案する。
多様なデータソース上で効果的なトレーニングを可能にするために,複数のデータセットをまたいだ協調トレーニングを支援する統一的なトレーニング戦略を提案する。
実験結果から,X-SAMは画像分割ベンチマークの精度を向上し,マルチモーダル・ピクセルレベルの視覚的理解の効率化を図った。
コードはhttps://github.com/wanghao9610/X-SAMで入手できる。
関連論文リスト
- Cross-Domain Semantic Segmentation with Large Language Model-Assisted Descriptor Generation [0.0]
LangSegはコンテキストに敏感できめ細かいサブクラス記述子を利用する新しいセマンティックセマンティックセマンティクス手法である。
我々はLangSegをADE20KとCOCO-Stuffという2つの挑戦的なデータセットで評価し、最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2025-01-27T20:02:12Z) - CALICO: Part-Focused Semantic Co-Segmentation with Large Vision-Language Models [2.331828779757202]
本稿では,マルチイメージ部分レベルの推論セグメンテーションのためのLVLM(Large Vision-Language Model)を提案する。
セマンティックな部分レベルの対応を識別する新しい対応抽出モジュールと、この情報をLVLMに埋め込む適応対応モジュールである。
パラメータの0.3%しか微調整されていないCALICOは,この課題に対して高いパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-12-26T18:59:37Z) - InstructSeg: Unifying Instructed Visual Segmentation with Multi-modal Large Language Models [37.43195217391341]
本稿では,画像レベルと映像レベルのセグメンテーションと推論セグメンテーションの融合を,IVS(Instructed Visual)として定義する。
具体的には、参照フレームから時間的およびオブジェクト情報を抽出し、包括的な映像理解を容易にするために、オブジェクト認識ビデオ知覚器を用いる。
マルチタスクとエンドツーエンドのトレーニングを活用することで、InstructSegは、さまざまな画像およびビデオセグメンテーションタスクにまたがる優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-12-18T16:20:40Z) - Instruction-guided Multi-Granularity Segmentation and Captioning with Large Multimodal Model [19.861556031795725]
MGLMM(Multi-Granularity Large Multimodal Model)を導入する。
MGLMMはユーザ指示に従ってキャプション(SegCap)の粒度をシームレスに調整することができる。
8つ以上の下流タスクに対処し、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-20T11:13:31Z) - PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model [49.80313655590392]
PSALMは、セグメント化タスクの課題に対処するため、LMM(Large Multi-modal Model)の強力な拡張である。
マスクデコーダとよく設計された入力スキーマを組み込んで,さまざまなセグメンテーションタスクを処理する。
PSALMの柔軟な設計は、複数のデータセットとタスクのジョイントトレーニングをサポートし、パフォーマンスとタスクの一般化を改善している。
論文 参考訳(メタデータ) (2024-03-21T17:50:47Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
本稿では,任意の粒度でセグメンテーションと認識を可能にする汎用画像セグメンテーションモデルであるSemantic-SAMを紹介する。
複数のデータセットを3つの粒度に集約し、オブジェクトとパーツの分離した分類を導入する。
マルチグラニュラリティ機能を実現するために,各クリックで複数のレベルのマスクを生成できるマルチ選択学習方式を提案する。
論文 参考訳(メタデータ) (2023-07-10T17:59:40Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - AIMS: All-Inclusive Multi-Level Segmentation [93.5041381700744]
視覚領域を3つのレベル(パート、エンティティ、リレーション)に分割するタスクであるAll-Inclusive Multi-Level(AIMS)を提案する。
また、アノテーションの不整合とタスク相関の2つの大きな課題に対処するために、マルチデータセットのマルチタスクトレーニングを通じて統合されたAIMSモデルを構築します。
論文 参考訳(メタデータ) (2023-05-28T16:28:49Z) - Segment Everything Everywhere All at Once [124.90835636901096]
画像中のすべてのものを同時にセグメント化するための,迅速かつインタラクティブなモデルであるSEEMを提案する。
そこで本研究では,あらゆるタイプのセグメンテーションタスクに対して,多様なプロンプトを可能にする新しい復号化機構を提案する。
多様なセグメンテーションタスクにおけるSEEMの有効性を検証するための総合的な実証的研究を行った。
論文 参考訳(メタデータ) (2023-04-13T17:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。