VER-Bench: Evaluating MLLMs on Reasoning with Fine-Grained Visual Evidence
- URL: http://arxiv.org/abs/2508.04852v1
- Date: Wed, 06 Aug 2025 19:59:42 GMT
- Title: VER-Bench: Evaluating MLLMs on Reasoning with Fine-Grained Visual Evidence
- Authors: Chenhui Qiang, Zhaoyang Wei, Xumeng Han Zipeng Wang, Siyao Li, Xiangyuan Lan, Jianbin Jiao, Zhenjun Han,
- Abstract summary: VER-Bench is a novel framework to evaluate MLLMs' ability to identify fine-grained visual clues.<n>Each question in VER-Bench is accompanied by structured evidence: visual clues and question-related reasoning derived from them.
- Score: 24.872901965956604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of MLLMs, evaluating their visual capabilities has become increasingly crucial. Current benchmarks primarily fall into two main types: basic perception benchmarks, which focus on local details but lack deep reasoning (e.g., "what is in the image?"), and mainstream reasoning benchmarks, which concentrate on prominent image elements but may fail to assess subtle clues requiring intricate analysis. However, profound visual understanding and complex reasoning depend more on interpreting subtle, inconspicuous local details than on perceiving salient, macro-level objects. These details, though occupying minimal image area, often contain richer, more critical information for robust analysis. To bridge this gap, we introduce the VER-Bench, a novel framework to evaluate MLLMs' ability to: 1) identify fine-grained visual clues, often occupying on average just 0.25% of the image area; 2) integrate these clues with world knowledge for complex reasoning. Comprising 374 carefully designed questions across Geospatial, Temporal, Situational, Intent, System State, and Symbolic reasoning, each question in VER-Bench is accompanied by structured evidence: visual clues and question-related reasoning derived from them. VER-Bench reveals current models' limitations in extracting subtle visual evidence and constructing evidence-based arguments, highlighting the need to enhance models's capabilities in fine-grained visual evidence extraction, integration, and reasoning for genuine visual understanding and human-like analysis. Dataset and additional materials are available https://github.com/verbta/ACMMM-25-Materials.
Related papers
- Fast or Slow? Integrating Fast Intuition and Deliberate Thinking for Enhancing Visual Question Answering [11.271123465926301]
Multimodal large language models (MLLMs) still struggle with complex reasoning tasks in Visual Question Answering.<n>We propose FOCUS, a plug-and-play approach that dynamically adapts to the complexity of questions.<n>Experiments on four benchmarks, ScienceQA, TextQA, VizWiz, and MME, demonstrate that FOCUS consistently improves the performance of both open-source and black-box MLLMs.
arXiv Detail & Related papers (2025-06-01T03:15:29Z) - Can MLLMs Guide Me Home? A Benchmark Study on Fine-Grained Visual Reasoning from Transit Maps [56.76175383189738]
We introduce ReasonMap, a benchmark designed to assess the fine-grained visual understanding and spatial reasoning abilities of MLLMs.<n>ReasonMap encompasses high-resolution transit maps from 30 cities across 13 countries and includes 1,008 question-answer pairs spanning two question types and three templates.<n> Comprehensive evaluations of 15 popular MLLMs, including both base and reasoning variants, reveal a counterintuitive pattern.
arXiv Detail & Related papers (2025-05-24T12:33:52Z) - MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams [65.02628814094639]
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements.<n>Current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether Multimodal Large Language Models genuinely understand mathematical diagrams beyond superficial pattern recognition.<n>We introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs.<n>We construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text annotated with geometric primitives and precise spatial relationships.
arXiv Detail & Related papers (2025-03-26T17:30:41Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
This paper proposes a new visual grounding task called multi-context visual grounding.<n>It aims to localize instances of interest across multiple images based on open-ended text prompts.<n>We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities.
arXiv Detail & Related papers (2024-10-16T07:52:57Z) - SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge [60.76719375410635]
We propose a new benchmark (SOK-Bench) consisting of 44K questions and 10K situations with instance-level annotations depicted in the videos.
The reasoning process is required to understand and apply situated knowledge and general knowledge for problem-solving.
We generate associated question-answer pairs and reasoning processes, finally followed by manual reviews for quality assurance.
arXiv Detail & Related papers (2024-05-15T21:55:31Z) - PTR: A Benchmark for Part-based Conceptual, Relational, and Physical
Reasoning [135.2892665079159]
We introduce a new large-scale diagnostic visual reasoning dataset named PTR.
PTR contains around 70k RGBD synthetic images with ground truth object and part level annotations.
We examine several state-of-the-art visual reasoning models on this dataset and observe that they still make many surprising mistakes.
arXiv Detail & Related papers (2021-12-09T18:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.