Gaussian mixture layers for neural networks
- URL: http://arxiv.org/abs/2508.04883v1
- Date: Wed, 06 Aug 2025 21:16:17 GMT
- Title: Gaussian mixture layers for neural networks
- Authors: Sinho Chewi, Philippe Rigollet, Yuling Yan,
- Abstract summary: Mean-field theory for two-layer neural networks considers infinitely wide networks that are linearly parameterized by a probability measure over the parameter space.<n>This nonparametric perspective has significantly advanced both the theoretical and conceptual understanding of neural networks.<n>In this work, we investigate whether dynamics can be directly implemented over probability measures.
- Score: 14.707634995360591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The mean-field theory for two-layer neural networks considers infinitely wide networks that are linearly parameterized by a probability measure over the parameter space. This nonparametric perspective has significantly advanced both the theoretical and conceptual understanding of neural networks, with substantial efforts made to validate its applicability to networks of moderate width. In this work, we explore the opposite direction, investigating whether dynamics can be directly implemented over probability measures. Specifically, we employ Gaussian mixture models as a flexible and expressive parametric family of distributions together with the theory of Wasserstein gradient flows to derive training dynamics for such measures. Our approach introduces a new type of layer -- the Gaussian mixture (GM) layer -- that can be integrated into neural network architectures. As a proof of concept, we validate our proposal through experiments on simple classification tasks, where a GM layer achieves test performance comparable to that of a two-layer fully connected network. Furthermore, we examine the behavior of these dynamics and demonstrate numerically that GM layers exhibit markedly different behavior compared to classical fully connected layers, even when the latter are large enough to be considered in the mean-field regime.
Related papers
- Precise gradient descent training dynamics for finite-width multi-layer neural networks [8.057006406834466]
We provide the first precise distributional characterization of gradient descent iterates for general multi-layer neural networks.<n>Our non-asymptotic state evolution theory captures Gaussian fluctuations in first-layer weights and concentration in deeper-layer weights.
arXiv Detail & Related papers (2025-05-08T02:19:39Z) - Approximating Latent Manifolds in Neural Networks via Vanishing Ideals [20.464009622419766]
We establish a connection between manifold learning and computational algebra by demonstrating how vanishing ideals can characterize the latent manifold of deep networks.<n>We propose a new neural architecture that truncates a pretrained network at an intermediate layer, and approximates each class manifold via generators of the vanishing ideal.<n>The resulting models have significantly fewer layers than their pretrained baselines, while maintaining comparable accuracy, achieving higher throughput and utilizing fewer parameters.
arXiv Detail & Related papers (2025-02-20T21:23:02Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Wide Neural Networks as Gaussian Processes: Lessons from Deep
Equilibrium Models [16.07760622196666]
We study the deep equilibrium model (DEQ), an infinite-depth neural network with shared weight matrices across layers.
Our analysis reveals that as the width of DEQ layers approaches infinity, it converges to a Gaussian process.
Remarkably, this convergence holds even when the limits of depth and width are interchanged.
arXiv Detail & Related papers (2023-10-16T19:00:43Z) - Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression [37.69303106863453]
The Information Bottleneck (IB) principle offers an information-theoretic framework for analyzing the training process of deep neural networks (DNNs)
In this paper, we introduce a framework for conducting IB analysis of general NNs.
We also perform IB analysis on a close-to-real-scale, which reveals new features of the MI dynamics.
arXiv Detail & Related papers (2023-05-13T21:44:32Z) - WLD-Reg: A Data-dependent Within-layer Diversity Regularizer [98.78384185493624]
Neural networks are composed of multiple layers arranged in a hierarchical structure jointly trained with a gradient-based optimization.
We propose to complement this traditional 'between-layer' feedback with additional 'within-layer' feedback to encourage the diversity of the activations within the same layer.
We present an extensive empirical study confirming that the proposed approach enhances the performance of several state-of-the-art neural network models in multiple tasks.
arXiv Detail & Related papers (2023-01-03T20:57:22Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - The Principles of Deep Learning Theory [19.33681537640272]
This book develops an effective theory approach to understanding deep neural networks of practical relevance.
We explain how these effectively-deep networks learn nontrivial representations from training.
We show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks.
arXiv Detail & Related papers (2021-06-18T15:00:00Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.