Charting Uncertain Waters: A Socio-Technical Framework for Navigating GenAI's Impact on Open Source Communities
- URL: http://arxiv.org/abs/2508.04921v1
- Date: Wed, 06 Aug 2025 22:54:15 GMT
- Title: Charting Uncertain Waters: A Socio-Technical Framework for Navigating GenAI's Impact on Open Source Communities
- Authors: Zixuan Feng, Reed Milewicz, Emerson Murphy-Hill, Tyler Menezes, Alexander Serebrenik, Igor Steinmacher, Anita Sarma,
- Abstract summary: We conduct a scenario-driven, conceptual exploration using a socio-technical framework inspired by McLuhan's Tetrad to surface both risks and opportunities for community resilience amid GenAI-driven disruption of OSS development across four domains: software practices, documentation, community engagement, and governance.<n>By adopting this lens, OSS leaders and researchers can proactively shape the future of their ecosystems, rather than simply reacting to technological upheaval.
- Score: 53.812795099349295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open Source Software communities face a wave of uncertainty as Generative AI rapidly transforms how software is created, maintained, and governed. Without clear frameworks, communities risk being overwhelmed by the complexity and ambiguity introduced by GenAI, threatening the collaborative ethos that underpins OSS. We conduct a scenario-driven, conceptual exploration using a socio-technical framework inspired by McLuhan's Tetrad to surface both risks and opportunities for community resilience amid GenAI-driven disruption of OSS development across four domains: software practices, documentation, community engagement, and governance. By adopting this lens, OSS leaders and researchers can proactively shape the future of their ecosystems, rather than simply reacting to technological upheaval.
Related papers
- Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
Generative Artificial Intelligence is a powerful new technology with the potential to boost innovation and reshape governance in many industries.<n>However, organisations face major challenges in scaling GenAI, including technology complexity, governance gaps and resource misalignments.<n>This study explores how Enterprise Architecture Management can meet the complex requirements of GenAI adoption within large enterprises.
arXiv Detail & Related papers (2025-05-09T07:41:33Z) - The Evolution of Zero Trust Architecture (ZTA) from Concept to Implementation [0.0]
Zero Trust Architecture (ZTA) is one of the paradigm changes in cybersecurity.<n>This article studies the core concepts of ZTA, its beginning, a few use cases and future trends.<n>ZTA is expected to strengthen cloud environments, education, work environments (including from home) while controlling other risks like lateral movement and insider threats.
arXiv Detail & Related papers (2025-04-16T11:26:54Z) - AI Risk Atlas: Taxonomy and Tooling for Navigating AI Risks and Resources [24.502423087280008]
We introduce the AI Risk Atlas, a structured taxonomy that consolidates AI risks from diverse sources and aligns them with governance frameworks.<n>We also present the Risk Atlas Nexus, a collection of open-source tools designed to bridge the divide between risk definitions, benchmarks, datasets, and mitigation strategies.
arXiv Detail & Related papers (2025-02-26T12:23:14Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
Deepfakes and the spread of m/disinformation have emerged as formidable threats to the integrity of information ecosystems worldwide.
We highlight the mechanisms through which generative AI based on large models (LM-based GenAI) craft seemingly convincing yet fabricated contents.
We introduce an integrated framework that combines advanced detection algorithms, cross-platform collaboration, and policy-driven initiatives.
arXiv Detail & Related papers (2023-11-29T06:47:58Z) - The Software Genome Project: Venture to the Genomic Pathways of Open
Source Software and Its Applications [8.55939767653389]
textbfSoftware Genome Project is geared towards the secure monitoring and exploitation of open-source software.
Software Genome Project builds a complete set of software genome maps to help developers and managers gain a deeper understanding of software complexity and diversity.
arXiv Detail & Related papers (2023-11-16T13:18:24Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.