Accelerating Conditional Prompt Learning via Masked Image Modeling for Vision-Language Models
- URL: http://arxiv.org/abs/2508.04942v1
- Date: Thu, 07 Aug 2025 00:08:31 GMT
- Title: Accelerating Conditional Prompt Learning via Masked Image Modeling for Vision-Language Models
- Authors: Phuoc-Nguyen Bui, Khanh-Binh Nguyen, Hyunseung Choo,
- Abstract summary: Vision-language models (VLMs) like CLIP excel in zero-shot learning but often require resource-intensive training to adapt to new tasks.<n>We introduce ProMIM, a plug-and-play framework that enhances conditional prompt learning by integrating masked image modeling (MIM) into existing VLM pipelines.
- Score: 1.1925232472331495
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vision-language models (VLMs) like CLIP excel in zero-shot learning but often require resource-intensive training to adapt to new tasks. Prompt learning techniques, such as CoOp and CoCoOp, offer efficient adaptation but tend to overfit to known classes, limiting generalization to unseen categories. We introduce ProMIM, a plug-and-play framework that enhances conditional prompt learning by integrating masked image modeling (MIM) into existing VLM pipelines. ProMIM leverages a simple yet effective masking strategy to generate robust, instance-conditioned prompts, seamlessly augmenting methods like CoOp and CoCoOp without altering their core architectures. By masking only visible image patches and using these representations to guide prompt generation, ProMIM improves feature robustness and mitigates overfitting, all while introducing negligible additional computational cost. Extensive experiments across zero-shot and few-shot classification tasks demonstrate that ProMIM consistently boosts generalization performance when plugged into existing approaches, providing a practical, lightweight solution for real-world vision-language applications.
Related papers
- Multimodal Prompt Alignment for Facial Expression Recognition [24.470095812039286]
MPA-FER provides fine-grained semantic guidance to the learning process of prompted visual features.<n>Our framework outperforms state-of-the-art methods on three FER benchmark datasets.
arXiv Detail & Related papers (2025-06-26T05:28:57Z) - Prompt-OT: An Optimal Transport Regularization Paradigm for Knowledge Preservation in Vision-Language Model Adaptation [5.296260279593993]
Vision-language models (VLMs) such as CLIP demonstrate strong performance but struggle when adapted to downstream tasks.<n>We propose an optimal transport (OT)-guided prompt learning framework that mitigates forgetting by preserving the structural consistency of feature distributions.<n>Our approach enforces joint constraints on both vision and text representations, ensuring a holistic feature alignment.
arXiv Detail & Related papers (2025-03-11T21:38:34Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.<n>EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Towards Generative Class Prompt Learning for Fine-grained Visual Recognition [5.633314115420456]
Generative Class Prompt Learning and Contrastive Multi-class Prompt Learning are presented.
Generative Class Prompt Learning improves visio-linguistic synergy in class embeddings by conditioning on few-shot exemplars with learnable class prompts.
CoMPLe builds on this foundation by introducing a contrastive learning component that encourages inter-class separation.
arXiv Detail & Related papers (2024-09-03T12:34:21Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
arXiv Detail & Related papers (2023-12-05T07:29:14Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - Meta-Adapter: An Online Few-shot Learner for Vision-Language Model [64.21017759533474]
Contrastive vision-language pre-training, known as CLIP, demonstrates remarkable potential in perceiving open-world visual concepts.
Few-shot learning methods based on CLIP typically require offline fine-tuning of the parameters on few-shot samples.
We propose the Meta-Adapter, a lightweight residual-style adapter, to refine the CLIP features guided by the few-shot samples in an online manner.
arXiv Detail & Related papers (2023-11-07T07:27:16Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks.
We propose a single-stage and standalone method, MOCA, which unifies both desired properties.
We achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols.
arXiv Detail & Related papers (2023-07-18T15:46:20Z) - Leveraging per Image-Token Consistency for Vision-Language Pre-training [52.825150269820696]
Cross-modal masked language modeling (CMLM) is insufficient for vision-language pre-training.
We propose EPIC (lEveraging Per Image-Token Consistency for vision-language pre-training)
The proposed EPIC method is easily combined with pre-training methods.
arXiv Detail & Related papers (2022-11-20T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.