Generative AI for Object-Oriented Programming: Writing the Right Code and Reasoning the Right Logic
- URL: http://arxiv.org/abs/2508.05005v1
- Date: Thu, 07 Aug 2025 03:38:17 GMT
- Title: Generative AI for Object-Oriented Programming: Writing the Right Code and Reasoning the Right Logic
- Authors: Gang Xu, Airong Wang, Yushan Pan,
- Abstract summary: Large language models (LLMs) have diverse applications spanning finance, commonsense knowledge graphs, medicine, and visual analysis.<n>Our work aims to address this gap by presenting a vision from the perspectives of key stakeholders involved in an OOP task.<n> Furthermore, we propose ways to augment existing logical reasoning and code writing, ultimately enhancing the programming experience.
- Score: 2.170361965861349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We find ourselves in the midst of an explosion in artificial intelligence research, particularly with large language models (LLMs). These models have diverse applications spanning finance, commonsense knowledge graphs, medicine, and visual analysis. In the world of Object-Oriented Programming(OOP), a robust body of knowledge and methods has been developed for managing complex tasks through object-oriented thinking. However, the intersection of LLMs with OOP remains an underexplored territory. Empirically, we currently possess limited understanding of how LLMs can enhance the effectiveness of OOP learning and code writing, as well as how we can evaluate such AI-powered tools. Our work aims to address this gap by presenting a vision from the perspectives of key stakeholders involved in an OOP task: programmers, mariners, and experienced programmers. We identify critical junctures within typical coding workflows where the integration of LLMs can offer significant benefits. Furthermore, we propose ways to augment existing logical reasoning and code writing, ultimately enhancing the programming experience.
Related papers
- Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs [53.00384299879513]
In large language models (LLMs), code and reasoning reinforce each other.<n>Code provides verifiable execution paths, enforces logical decomposition, and enables runtime validation.<n>We identify key challenges and propose future research directions to strengthen this synergy.
arXiv Detail & Related papers (2025-02-26T18:55:42Z) - Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
Large Language Models (LLMs) have become a focal point of research across various domains.
This paper investigates the impact of characteristics and learning paradigms on the performance of 12 open-source LLMs in log level suggestion.
arXiv Detail & Related papers (2024-10-11T03:52:17Z) - The why, what, and how of AI-based coding in scientific research [0.0]
Generative AI, particularly large language models (LLMs), has the potential to transform coding into intuitive conversations.
We dissect AI-based coding through three key lenses.
We address the limitations and future outlook of AI in coding.
arXiv Detail & Related papers (2024-10-03T02:36:30Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Object-Oriented Programming [17.98778771365221]
Object-Oriented Programming (OOP) has become a crucial paradigm for managing the growing complexity of modern software systems.<n>This work provides a comprehensive introduction to the integration of OOP techniques within these domains.<n>We examine how design patterns and modular programming can be employed to enhance the structure and efficiency of machine learning systems.
arXiv Detail & Related papers (2024-09-30T03:37:10Z) - CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
Large language models (LLMs) have demonstrated impressive capabilities across various natural language processing tasks.
We present a systematic evaluation of state-of-the-art LLMs' complex logical reasoning abilities.
We find that LLMs excel at reasoning over general world knowledge but face significant challenges with specialized domain-specific knowledge.
arXiv Detail & Related papers (2024-07-30T05:40:32Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.<n>WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s)
In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base.
Our findings suggest that LLMs can play a crucial role in the early stages of software development.
arXiv Detail & Related papers (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.