Q-DPTS: Quantum Differentially Private Time Series Forecasting via Variational Quantum Circuits
- URL: http://arxiv.org/abs/2508.05036v1
- Date: Thu, 07 Aug 2025 05:23:51 GMT
- Title: Q-DPTS: Quantum Differentially Private Time Series Forecasting via Variational Quantum Circuits
- Authors: Chi-Sheng Chen, Samuel Yen-Chi Chen,
- Abstract summary: We propose Q-DPTS, a hybrid quantum-classical framework for Quantum Differentially Private Time Series Forecasting.<n>Q-DPTS combines Variational Quantum Circuits with per-sample gradient clipping and Gaussian noise injection, ensuring rigorous $(epsilon, delta)$-differential privacy.<n>Results demonstrate that Q-DPTS consistently achieves lower prediction error under the same privacy budget, indicating a favorable privacy-utility trade-off.
- Score: 3.1219529587298727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is vital in domains where data sensitivity is paramount, such as finance and energy systems. While Differential Privacy (DP) provides theoretical guarantees to protect individual data contributions, its integration especially via DP-SGD often impairs model performance due to injected noise. In this paper, we propose Q-DPTS, a hybrid quantum-classical framework for Quantum Differentially Private Time Series Forecasting. Q-DPTS combines Variational Quantum Circuits (VQCs) with per-sample gradient clipping and Gaussian noise injection, ensuring rigorous $(\epsilon, \delta)$-differential privacy. The expressiveness of quantum models enables improved robustness against the utility loss induced by DP mechanisms. We evaluate Q-DPTS on the ETT (Electricity Transformer Temperature) dataset, a standard benchmark for long-term time series forecasting. Our approach is compared against both classical and quantum baselines, including LSTM, QASA, QRWKV, and QLSTM. Results demonstrate that Q-DPTS consistently achieves lower prediction error under the same privacy budget, indicating a favorable privacy-utility trade-off. This work presents one of the first explorations into quantum-enhanced differentially private forecasting, offering promising directions for secure and accurate time series modeling in privacy-critical scenarios.
Related papers
- Quantum Temporal Fusion Transformer [4.757470449749876]
Temporal Fusion Transformer (TFT) is a state-of-the-art attention-based deep neural network architecture specifically designed for multi-horizon time series forecasting.<n>We propose a Quantum Temporal Fusion Transformer (QTFT), a quantum-enhanced hybrid quantum-classical architecture that extends the capabilities of the classical framework.
arXiv Detail & Related papers (2025-08-06T03:21:20Z) - Calibration of Quantum Devices via Robust Statistical Methods [45.464983015777314]
We numerically analyze advanced statistical methods for Bayesian inference against the state-of-the-art in quantum parameter learning.<n>We show advantages of these approaches over existing ones, namely under multi-modality and high dimensionality.<n>Our findings have applications in challenging quantumcharacterization tasks namely learning the dynamics of open quantum systems.
arXiv Detail & Related papers (2025-07-09T15:22:17Z) - Towards A Hybrid Quantum Differential Privacy [22.644150711891008]
Quantum Differential Privacy (QDP) leverages inherent quantum noise to safeguard privacy, surpassing traditional DP.<n>This paper develops comprehensive noise profiles, identifies noise types beneficial for QDP, and highlights the need for practical implementations beyond theoretical models.
arXiv Detail & Related papers (2025-01-14T05:13:37Z) - On the Convergence of DP-SGD with Adaptive Clipping [56.24689348875711]
Gradient Descent with gradient clipping is a powerful technique for enabling differentially private optimization.<n>This paper provides the first comprehensive convergence analysis of SGD with quantile clipping (QC-SGD)<n>We show how QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD but can be mitigated through a carefully designed quantile and step size schedule.
arXiv Detail & Related papers (2024-12-27T20:29:47Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation.<n>In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt.<n>We propose a benchmark for amplitude estimation algorithms and use it to test BAE against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Bridging Quantum Computing and Differential Privacy: Insights into Quantum Computing Privacy [15.024190374248088]
Differential privacy (DP) has been extended to the quantum domain, i.e., quantum differential privacy (QDP)
QDP may become one of the most promising approaches toward privacy-preserving quantum computing.
This paper provides an overview of the various implementations of QDP and their performance in terms of privacy parameters under the DP setting.
arXiv Detail & Related papers (2024-03-14T08:40:30Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Quantum Pufferfish Privacy: A Flexible Privacy Framework for Quantum Systems [19.332726520752846]
We propose a versatile privacy framework for quantum systems, termed quantum pufferfish privacy (QPP)
Inspired by classical pufferfish privacy, our formulation generalizes and addresses limitations of quantum differential privacy.
We show that QPP can be equivalently formulated in terms of the Datta-Leditzky information spectrum divergence.
arXiv Detail & Related papers (2023-06-22T17:21:17Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Q-fid: Quantum Circuit Fidelity Improvement with LSTM Networks [0.6062751776009752]
The fidelity of quantum circuits (QC) is influenced by several factors, including hardware characteristics, calibration status, and the transpilation process.<n>Q-fid is introduced, a Long Short-Term Memory (LSTM) based fidelity prediction system accompanied by a novel metric designed to quantify the fidelity of quantum circuits.<n>Q-fid achieves a high prediction accuracy with an average RMSE of 0.0515, up to 24.7x more accurate than the Qiskit transpile tool mapomatic.
arXiv Detail & Related papers (2023-03-30T16:44:12Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification.
Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets.
arXiv Detail & Related papers (2022-02-17T09:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.