JPS: Jailbreak Multimodal Large Language Models with Collaborative Visual Perturbation and Textual Steering
- URL: http://arxiv.org/abs/2508.05087v1
- Date: Thu, 07 Aug 2025 07:14:01 GMT
- Title: JPS: Jailbreak Multimodal Large Language Models with Collaborative Visual Perturbation and Textual Steering
- Authors: Renmiao Chen, Shiyao Cui, Xuancheng Huang, Chengwei Pan, Victor Shea-Jay Huang, QingLin Zhang, Xuan Ouyang, Zhexin Zhang, Hongning Wang, Minlie Huang,
- Abstract summary: Jailbreak attacks against multimodal large language Models (MLLMs) are a significant research focus.<n>We propose JPS, underlineJailbreak MLLMs with collaborative visual underlinePerturbation and textual underlineSteering.
- Score: 73.962469626788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Jailbreak attacks against multimodal large language Models (MLLMs) are a significant research focus. Current research predominantly focuses on maximizing attack success rate (ASR), often overlooking whether the generated responses actually fulfill the attacker's malicious intent. This oversight frequently leads to low-quality outputs that bypass safety filters but lack substantial harmful content. To address this gap, we propose JPS, \underline{J}ailbreak MLLMs with collaborative visual \underline{P}erturbation and textual \underline{S}teering, which achieves jailbreaks via corporation of visual image and textually steering prompt. Specifically, JPS utilizes target-guided adversarial image perturbations for effective safety bypass, complemented by "steering prompt" optimized via a multi-agent system to specifically guide LLM responses fulfilling the attackers' intent. These visual and textual components undergo iterative co-optimization for enhanced performance. To evaluate the quality of attack outcomes, we propose the Malicious Intent Fulfillment Rate (MIFR) metric, assessed using a Reasoning-LLM-based evaluator. Our experiments show JPS sets a new state-of-the-art in both ASR and MIFR across various MLLMs and benchmarks, with analyses confirming its efficacy. Codes are available at \href{https://github.com/thu-coai/JPS}{https://github.com/thu-coai/JPS}. \color{warningcolor}{Warning: This paper contains potentially sensitive contents.}
Related papers
- PRISM: Programmatic Reasoning with Image Sequence Manipulation for LVLM Jailbreaking [3.718606661938873]
We propose a novel and effective jailbreak framework inspired by Return-Oriented Programming (ROP) techniques from software security.<n>Our approach decomposes a harmful instruction into a sequence of individually benign visual gadgets.<n>Our findings reveal a critical and underexplored vulnerability that exploits the compositional reasoning abilities of LVLMs.
arXiv Detail & Related papers (2025-07-29T07:13:56Z) - Con Instruction: Universal Jailbreaking of Multimodal Large Language Models via Non-Textual Modalities [76.9327488986162]
Existing attacks against multimodal language models (MLLMs) primarily communicate instructions through text accompanied by adversarial images.<n>We exploit the capabilities of MLLMs to interpret non-textual instructions, specifically, adversarial images or audio generated by our novel method, Con Instruction.<n>Our method achieves the highest attack success rates, reaching 81.3% and 86.6% on LLaVA-v1.5 (13B)
arXiv Detail & Related papers (2025-05-31T13:11:14Z) - "Haet Bhasha aur Diskrimineshun": Phonetic Perturbations in Code-Mixed Hinglish to Red-Team LLMs [2.3020018305241337]
Large Language Models (LLMs) have become increasingly powerful, with multilingual and multimodal capabilities improving by the day.<n>Existing red-teaming efforts have previously focused on the English language, using fixed template-based attacks.<n>This study introduces a novel strategy that leverages code-mixing and phonetic perturbations to jailbreak LLMs for both text and image generation tasks.
arXiv Detail & Related papers (2025-05-20T11:35:25Z) - Why Not Act on What You Know? Unleashing Safety Potential of LLMs via Self-Aware Guard Enhancement [48.50995874445193]
Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks.<n>We propose SAGE (Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs' strong safety discrimination performance with their relatively weaker safety generation ability.
arXiv Detail & Related papers (2025-05-17T15:54:52Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.<n>We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)<n>We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
This paper introduces the Bi-Modal Adversarial Prompt Attack (BAP), which executes jailbreaks by optimizing textual and visual prompts cohesively.
In particular, we utilize a large language model to analyze jailbreak failures and employ chain-of-thought reasoning to refine textual prompts.
arXiv Detail & Related papers (2024-06-06T13:00:42Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.