PRISM: Programmatic Reasoning with Image Sequence Manipulation for LVLM Jailbreaking
- URL: http://arxiv.org/abs/2507.21540v1
- Date: Tue, 29 Jul 2025 07:13:56 GMT
- Title: PRISM: Programmatic Reasoning with Image Sequence Manipulation for LVLM Jailbreaking
- Authors: Quanchen Zou, Zonghao Ying, Moyang Chen, Wenzhuo Xu, Yisong Xiao, Yakai Li, Deyue Zhang, Dongdong Yang, Zhao Liu, Xiangzheng Zhang,
- Abstract summary: We propose a novel and effective jailbreak framework inspired by Return-Oriented Programming (ROP) techniques from software security.<n>Our approach decomposes a harmful instruction into a sequence of individually benign visual gadgets.<n>Our findings reveal a critical and underexplored vulnerability that exploits the compositional reasoning abilities of LVLMs.
- Score: 3.718606661938873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing sophistication of large vision-language models (LVLMs) has been accompanied by advances in safety alignment mechanisms designed to prevent harmful content generation. However, these defenses remain vulnerable to sophisticated adversarial attacks. Existing jailbreak methods typically rely on direct and semantically explicit prompts, overlooking subtle vulnerabilities in how LVLMs compose information over multiple reasoning steps. In this paper, we propose a novel and effective jailbreak framework inspired by Return-Oriented Programming (ROP) techniques from software security. Our approach decomposes a harmful instruction into a sequence of individually benign visual gadgets. A carefully engineered textual prompt directs the sequence of inputs, prompting the model to integrate the benign visual gadgets through its reasoning process to produce a coherent and harmful output. This makes the malicious intent emergent and difficult to detect from any single component. We validate our method through extensive experiments on established benchmarks including SafeBench and MM-SafetyBench, targeting popular LVLMs. Results show that our approach consistently and substantially outperforms existing baselines on state-of-the-art models, achieving near-perfect attack success rates (over 0.90 on SafeBench) and improving ASR by up to 0.39. Our findings reveal a critical and underexplored vulnerability that exploits the compositional reasoning abilities of LVLMs, highlighting the urgent need for defenses that secure the entire reasoning process.
Related papers
- The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs [39.85609149662187]
We present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs.<n>Our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs.<n>Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models.
arXiv Detail & Related papers (2025-07-15T08:44:46Z) - Exploring the Vulnerability of the Content Moderation Guardrail in Large Language Models via Intent Manipulation [18.37303422539757]
We investigate the vulnerability of intent-aware guardrails and demonstrate that large language models exhibit implicit intent detection capabilities.<n>We propose a two-stage intent-based prompt-refinement framework, IntentPrompt, that first transforms harmful inquiries into structured outlines and further reframes them into declarative-style narratives.<n>Our framework consistently outperforms several cutting-edge jailbreak methods and evades even advanced Intent Analysis (IA) and Chain-of-Thought (CoT)-based defenses.
arXiv Detail & Related papers (2025-05-24T06:47:32Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
arXiv Detail & Related papers (2025-05-03T05:28:11Z) - Prefill-Based Jailbreak: A Novel Approach of Bypassing LLM Safety Boundary [2.4329261266984346]
Large Language Models (LLMs) are designed to generate helpful and safe content.<n> adversarial attacks, commonly referred to as jailbreak, can bypass their safety protocols.<n>We introduce a novel jailbreak attack method that leverages the prefilling feature of LLMs.
arXiv Detail & Related papers (2025-04-28T07:38:43Z) - AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models [0.0]
Large Language Models (LLMs) continue to exhibit vulnerabilities to jailbreaking attacks.<n>We present AutoAdv, a novel framework that automates adversarial prompt generation.<n>We show that our attacks achieve jailbreak success rates of up to 86% for harmful content generation.
arXiv Detail & Related papers (2025-04-18T08:38:56Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.<n>We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.<n>Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
This paper introduces the Bi-Modal Adversarial Prompt Attack (BAP), which executes jailbreaks by optimizing textual and visual prompts cohesively.
In particular, we utilize a large language model to analyze jailbreak failures and employ chain-of-thought reasoning to refine textual prompts.
arXiv Detail & Related papers (2024-06-06T13:00:42Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - Fight Back Against Jailbreaking via Prompt Adversarial Tuning [23.55544992740663]
Large Language Models (LLMs) are susceptible to jailbreaking attacks.
We propose an approach named Prompt Adversarial Tuning (PAT) that trains a prompt control attached to the user prompt as a guard prefix.
Our method is effective against both grey-box and black-box attacks, reducing the success rate of advanced attacks to nearly 0%.
arXiv Detail & Related papers (2024-02-09T09:09:39Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.