論文の概要: Learning from Similarity-Confidence and Confidence-Difference
- arxiv url: http://arxiv.org/abs/2508.05108v1
- Date: Thu, 07 Aug 2025 07:42:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.747582
- Title: Learning from Similarity-Confidence and Confidence-Difference
- Title(参考訳): 類似性の信頼と信頼の差から学ぶ
- Authors: Tomoya Tate, Kosuke Sugiyama, Masato Uchida,
- Abstract要約: 複数の視点から補完的な弱監督信号を利用する新しい弱監視学習(WSL)フレームワークを提案する。
具体的には,2種類の弱いラベルを統合する手法であるSconfConfDiff Classificationを紹介する。
両推定器が推定誤差境界に対して最適収束率を達成することを証明した。
- 参考スコア(独自算出の注目度): 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical machine learning applications, it is often challenging to assign accurate labels to data, and increasing the number of labeled instances is often limited. In such cases, Weakly Supervised Learning (WSL), which enables training with incomplete or imprecise supervision, provides a practical and effective solution. However, most existing WSL methods focus on leveraging a single type of weak supervision. In this paper, we propose a novel WSL framework that leverages complementary weak supervision signals from multiple relational perspectives, which can be especially valuable when labeled data is limited. Specifically, we introduce SconfConfDiff Classification, a method that integrates two distinct forms of weaklabels: similarity-confidence and confidence-difference, which are assigned to unlabeled data pairs. To implement this method, we derive two types of unbiased risk estimators for classification: one based on a convex combination of existing estimators, and another newly designed by modeling the interaction between two weak labels. We prove that both estimators achieve optimal convergence rates with respect to estimation error bounds. Furthermore, we introduce a risk correction approach to mitigate overfitting caused by negative empirical risk, and provide theoretical analysis on the robustness of the proposed method against inaccurate class prior probability and label noise. Experimental results demonstrate that the proposed method consistently outperforms existing baselines across a variety of settings.
- Abstract(参考訳): 実用的な機械学習アプリケーションでは、正確なラベルをデータに割り当てることはしばしば困難であり、ラベル付きインスタンスの数を増やすことは制限される。
このような場合、不完全または不正確な監督によるトレーニングを可能にする弱弱監視学習(WSL)は、実用的で効果的なソリューションを提供する。
しかし、既存のWSLメソッドのほとんどは、単一のタイプの弱い監督の活用に重点を置いている。
本稿では,複数のリレーショナル視点から補完的な弱い監視信号を利用する新しいWSLフレームワークを提案する。
具体的には,非ラベルデータペアに割り当てられる類似性信頼度と信頼度という,2種類の弱いラベルを統合する手法であるSconfConfDiff Classificationを紹介する。
本手法を実現するために,既存推定器の凸結合に基づく2種類の非バイアスリスク推定器と,弱ラベル間の相互作用をモデル化して新たに設計された2種類の非バイアスリスク推定器を導出する。
両推定器が推定誤差境界に対して最適収束率を達成することを証明した。
さらに, 負の経験的リスクによるオーバーフィッティングを緩和するリスク補正手法を導入し, 提案手法が不正確なクラス事前確率とラベルノイズに対するロバスト性について理論的解析を行った。
実験により,提案手法は様々な設定で既存のベースラインを一貫して上回ることを示す。
関連論文リスト
- An Unbiased Risk Estimator for Partial Label Learning with Augmented Classes [46.663081214928226]
PLLACを理論的に保証した非バイアスリスク推定器を提案する。
PLLACの推定誤差の理論的解析を行う。
ベンチマーク、UCI、実世界のデータセットの実験では、提案手法の有効性が示されている。
論文 参考訳(メタデータ) (2024-09-29T07:36:16Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
半教師付き学習(SSL)のための最悪ケース整合正則化手法を提案する。
本稿では,ラベル付きトレーニングデータとラベル付きトレーニングデータとを別々に比較した経験的損失項からなるSSLの一般化について述べる。
この境界によって動機づけられたSSLの目的は、元のラベルのないサンプルと、その複数の拡張版との最大の矛盾を最小限に抑えるものである。
論文 参考訳(メタデータ) (2022-09-26T12:04:49Z) - Learning from Similarity-Confidence Data [94.94650350944377]
類似度信頼性(Sconf)データから学習する新しい弱監督学習問題について検討する。
本研究では,Sconfデータのみから計算可能な分類リスクの非バイアス推定器を提案し,推定誤差境界が最適収束率を達成することを示す。
論文 参考訳(メタデータ) (2021-02-13T07:31:16Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。