Beyond Automation: Socratic AI, Epistemic Agency, and the Implications of the Emergence of Orchestrated Multi-Agent Learning Architectures
- URL: http://arxiv.org/abs/2508.05116v1
- Date: Thu, 07 Aug 2025 07:49:03 GMT
- Title: Beyond Automation: Socratic AI, Epistemic Agency, and the Implications of the Emergence of Orchestrated Multi-Agent Learning Architectures
- Authors: Peer-Benedikt Degen, Igor Asanov,
- Abstract summary: Generative AI is no longer a peripheral tool in higher education.<n>This paper presents findings from a controlled experiment evaluating a Socratic AI Tutor.<n>Students using the Tutor reported significantly greater support for critical, independent, and reflective thinking.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative AI is no longer a peripheral tool in higher education. It is rapidly evolving into a general-purpose infrastructure that reshapes how knowledge is generated, mediated, and validated. This paper presents findings from a controlled experiment evaluating a Socratic AI Tutor, a large language model designed to scaffold student research question development through structured dialogue grounded in constructivist theory. Conducted with 65 pre-service teacher students in Germany, the study compares interaction with the Socratic Tutor to engagement with an uninstructed AI chatbot. Students using the Socratic Tutor reported significantly greater support for critical, independent, and reflective thinking, suggesting that dialogic AI can stimulate metacognitive engagement and challenging recent narratives of de-skilling due to generative AI usage. These findings serve as a proof of concept for a broader pedagogical shift: the use of multi-agent systems (MAS) composed of specialised AI agents. To conceptualise this, we introduce the notion of orchestrated MAS, modular, pedagogically aligned agent constellations, curated by educators, that support diverse learning trajectories through differentiated roles and coordinated interaction. To anchor this shift, we propose an adapted offer-and-use model, in which students appropriate instructional offers from these agents. Beyond technical feasibility, we examine system-level implications for higher education institutions and students, including funding necessities, changes to faculty roles, curriculars, competencies and assessment practices. We conclude with a comparative cost-effectiveness analysis highlighting the scalability of such systems. In sum, this study contributes both empirical evidence and a conceptual roadmap for hybrid learning ecosystems that embed human-AI co-agency and pedagogical alignment.
Related papers
- AI-Educational Development Loop (AI-EDL): A Conceptual Framework to Bridge AI Capabilities with Classical Educational Theories [8.500617875591633]
This study introduces the AI-Educational Development Loop (AI-EDL), a theory-driven framework that integrates classical learning theories with human-in-the-loop artificial intelligence (AI)<n>The framework emphasizes transparency, self-regulated learning, and pedagogical oversight.
arXiv Detail & Related papers (2025-08-01T15:44:19Z) - AI-Powered Math Tutoring: Platform for Personalized and Adaptive Education [0.0]
We introduce a novel multi-agent AI tutoring platform that combines adaptive and personalized feedback, structured course generation, and textbook knowledge retrieval.<n>This system allows students to learn new topics while identifying and targeting their weaknesses, revise for exams effectively, and practice on an unlimited number of personalized exercises.
arXiv Detail & Related papers (2025-07-14T20:35:16Z) - Resurrecting Socrates in the Age of AI: A Study Protocol for Evaluating a Socratic Tutor to Support Research Question Development in Higher Education [0.0]
This protocol lays out a study grounded in constructivist learning theory to evaluate a novel AI-based Socratic Tutor.<n>The tutor engages students through iterative, reflective questioning, aiming to promote System 2 thinking.<n>This study aims to advance the understanding of how generative AI can be pedagogically aligned to support, not replace, human cognition.
arXiv Detail & Related papers (2025-04-05T00:49:20Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures.<n>It explores self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities.<n>It also examines the collective intelligence emerging from agent interactions, cooperation, and societal structures.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Advancing Education through Tutoring Systems: A Systematic Literature Review [3.276010440333338]
This study systematically reviews the transformative role of Tutoring Systems, encompassing Intelligent Tutoring Systems (ITS) and Robot Tutoring Systems (RTS)<n>The findings reveal significant advancements in AI techniques that enhance adaptability, engagement, and learning outcomes.<n>The study highlights the complementary strengths of ITS and RTS, proposing integrated hybrid solutions to maximize educational benefits.
arXiv Detail & Related papers (2025-03-12T18:47:07Z) - Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
This study delves into university instructors' experiences and attitudes toward AI language models.
We find no correlation between teaching style and attitude toward generative AI.
While CS educators show far more confidence in their technical understanding of generative AI tools, they show no more confidence in their ability to detect AI-generated work.
arXiv Detail & Related papers (2024-03-22T19:21:29Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.