論文の概要: Reasoning through Exploration: A Reinforcement Learning Framework for Robust Function Calling
- arxiv url: http://arxiv.org/abs/2508.05118v4
- Date: Fri, 10 Oct 2025 06:20:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:45.989655
- Title: Reasoning through Exploration: A Reinforcement Learning Framework for Robust Function Calling
- Title(参考訳): 探索による推論:ロバスト関数呼び出しのための強化学習フレームワーク
- Authors: Bingguang Hao, Zengzhuang Xu, Maolin Wang, Yuntao Wen, Yicheng Chen, Cunyin Peng, Long Chen, Dong Wang, Xiangyu Zhao, Jinjie Gu, Chenyi Zhuang, Ji Zhang,
- Abstract要約: グループ相対政策最適化(GRPO)に基づく新しいRLフレームワークである textbfEGPO を提案する。
EGPOの中核はエントロピー強化の利点関数であり、モデルのChain-of-Thought(CoT)のエントロピーをポリシー勾配に統合する。
挑戦的なBFCL(Berkeley Function Calling Leaderboard)では、EGPOでトレーニングされた4Bパラメータモデルが、同等サイズのモデルの間で新たな最先端を設定している。
- 参考スコア(独自算出の注目度): 35.97270347306353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effective training of Large Language Models (LLMs) for function calling faces a critical challenge: balancing exploration of complex reasoning paths with stable policy optimization. Standard methods like Supervised Fine-Tuning (SFT) fail to instill robust reasoning, and traditional Reinforcement Learning (RL) struggles with inefficient exploration. We propose \textbf{EGPO}, a new RL framework built upon Group Relative Policy Optimization (GRPO), designed to address this challenge directly. The core of EGPO is an entropy-enhanced advantage function that integrates the entropy of the model's Chain-of-Thought (CoT) into the policy gradient computation. This encourages the generation of diverse reasoning strategies. To maintain optimization direction, the entropy bonus is carefully constrained by a clipping mechanism. Complemented by a strict, binary reward signal, EGPO effectively guides the model towards discovering structured and accurate tool invocation patterns. On the challenging Berkeley Function Calling Leaderboard (BFCL), a 4B-parameter model trained with EGPO sets a new state-of-the-art among models of comparable size, surpassing a range of strong competitors, including GPT-4o and Gemini-2.5.
- Abstract(参考訳): 関数呼び出しのためのLarge Language Models (LLM) の効果的なトレーニングは重要な課題に直面している。
Supervised Fine-Tuning (SFT) のような標準的な手法は堅牢な推論を具体化せず、従来の強化学習 (RL) は非効率な探索に苦しむ。
我々は,グループ相対政策最適化(GRPO)に基づいて構築された新しいRLフレームワークである「textbf{EGPO}」を提案する。
EGPOの中核はエントロピー強化の利点関数であり、モデルのChain-of-Thought(CoT)のエントロピーをポリシー勾配計算に統合する。
これにより、多様な推論戦略の生成が促進される。
最適化方向を維持するために、エントロピーボーナスをクリッピング機構により慎重に拘束する。
厳密でバイナリな報酬信号によって補完されたEGPOは、構造的かつ正確なツール呼び出しパターンの発見に向けて、モデルを効果的にガイドする。
挑戦的なバークレー関数呼び出しリーダーボード(BFCL)では、EGPOでトレーニングされた4Bパラメータモデルが、GPT-4oやGemini-2.5など、さまざまな強力な競合モデルに匹敵する、新しい最先端のモデルをセットしている。
関連論文リスト
- Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-liteは、強化学習(RL)により最適化されたMixture-of-Experts(MoE)ベースの大規模言語モデルである
我々のアプローチは、挑戦的なベンチマーク上でのSOTA(State-of-the-art)の小規模推論モデルの性能と一致する。
論文 参考訳(メタデータ) (2025-06-17T17:12:34Z) - Scalable In-Context Q-Learning [42.80296905313835]
textbfScalable textbfIn-textbfContext textbfQ-textbfLearning (textbfSICQL)を提案する。
textbfSICQLは動的プログラミングとワールドモデリングを利用して、ICRLを効率的な報酬とタスクの一般化に向けて制御する。
論文 参考訳(メタデータ) (2025-06-02T04:21:56Z) - Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models [0.0]
本稿では、事前モデル知識を用いて探索過程をガイドし、強化学習を高速化することを提案する。
我々は,Q-函数の最適Q-函数への収束に関する理論的保証を,探索政策のクラスとして提案する。
論文 参考訳(メタデータ) (2025-04-08T12:33:38Z) - Is a Good Foundation Necessary for Efficient Reinforcement Learning? The Computational Role of the Base Model in Exploration [32.77845864484552]
本稿では,言語モデルを用いたRLの新しい計算フレームワークを提案する。
データ効率には必要ありませんが、フレームワーク内の任意のアルゴリズムのランタイムのバウンダリは低くなっています。
SpannerSamplingというアルゴリズムを導入し,事前学習したモデルが十分なカバレッジを享受するたびに,最適なデータ効率と計算効率を実現する。
論文 参考訳(メタデータ) (2025-03-10T15:31:42Z) - Hephaestus: Improving Fundamental Agent Capabilities of Large Language Models through Continual Pre-Training [69.13064064991552]
Hephaestus-Forgeは、API関数呼び出し、本質的な推論、計画におけるLLMエージェントの機能を強化するために設計された大規模な事前トレーニングコーパスである。
Hephaestus-Forgeは、76,537のAPIを含む103Bのエージェント固有のデータで構成されている。
Hephaestus-Forge上でのトレーニングの継続により、Hephaestusは3つのエージェントベンチマークで、小規模から中規模のオープンソースLLMと商用LLMに匹敵するパフォーマンスを誇っている。
論文 参考訳(メタデータ) (2025-02-10T15:54:34Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
大規模言語モデル(LLM)は様々なタスクで大きな成功を収めており、生成品質をさらに向上させるためには微調整が必要である場合もある。
これらの課題に対処する直接的な解決策は、教師なしの下流タスクから高信頼のデータを生成することである。
本稿では,プロンプトと全体的な擬似スーパービジョンを両立させる新しい手法,擬似教師付きデモアライメント・アライメント・アライメント・プロンプト・最適化(PAPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Multi-granularity Knowledge Transfer for Continual Reinforcement Learning [10.89257691485739]
連続強化学習(CRL)は、RLエージェントに一連のタスクを学習する能力を与える。
既存の手法は、しばしば類似のタスク間できめ細かい知識の伝達に重点を置いている。
本稿では,大きめの知識伝達を促進するためのMT-Coreという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-25T03:06:51Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。