Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning
- URL: http://arxiv.org/abs/2508.05129v1
- Date: Thu, 07 Aug 2025 08:08:13 GMT
- Title: Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning
- Authors: Wuqiang Zheng, Yiyan Xu, Xinyu Lin, Chongming Gao, Wenjie Wang, Fuli Feng,
- Abstract summary: We present PaperEval, a novel framework for automated paper evaluation using Large Language Models (LLMs)<n>PaperEval has two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies.<n> Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation.
- Score: 30.92327406304362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
Related papers
- PRISM: Fine-Grained Paper-to-Paper Retrieval with Multi-Aspect-Aware Query Optimization [61.783280234747394]
PRISM is a document-to-document retrieval method that introduces multiple, fine-grained representations for both the query and candidate papers.<n>We present SciFullBench, a novel benchmark in which the complete and segmented context of full papers for both queries and candidates is available.<n>Experiments show that PRISM improves performance by an average of 4.3% over existing retrieval baselines.
arXiv Detail & Related papers (2025-07-14T08:41:53Z) - Literature-Grounded Novelty Assessment of Scientific Ideas [23.481266336046833]
We propose the Idea Novelty Checker, an LLM-based retrieval-augmented generation framework.<n>Our experiments demonstrate that our novelty checker achieves approximately 13% higher agreement than existing approaches.
arXiv Detail & Related papers (2025-06-27T08:47:28Z) - AutoRev: Automatic Peer Review System for Academic Research Papers [9.269282930029856]
AutoRev is an Automatic Peer Review System for Academic Research Papers.<n>Our framework represents an academic document as a graph, enabling the extraction of the most critical passages.<n>When applied to review generation, our method outperforms SOTA baselines by an average of 58.72%.
arXiv Detail & Related papers (2025-05-20T13:59:58Z) - XtraGPT: Context-Aware and Controllable Academic Paper Revision via Human-AI Collaboration [41.44785777328187]
XtraGPT is the first suite of open-source large language models (LLMs) designed to provide context-aware, instruction-guided writing assistance.<n>We introduce a dataset of 7,040 research papers from top-tier venues annotated with over 140,000 instruction-response pairs.<n>Experiments validate that XtraGPT significantly outperforms same-scale baselines and approaches the quality of proprietary systems.
arXiv Detail & Related papers (2025-05-16T15:02:19Z) - Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol [83.90769864167301]
Literature review tables are essential for summarizing and comparing collections of scientific papers.<n>We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers.<n>Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques.
arXiv Detail & Related papers (2025-04-14T14:52:28Z) - Taxonomy Tree Generation from Citation Graph [15.188580557890942]
HiGTL is a novel end-to-end framework guided by human-provided instructions or preferred topics.<n>We develop a novel taxonomy node verbalization strategy that iteratively generates central concepts for each cluster.<n>Experiments demonstrate that HiGTL effectively produces coherent, high-quality concept.
arXiv Detail & Related papers (2024-10-02T13:02:03Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
We propose RelevAI-Reviewer, an automatic system that conceptualizes the task of survey paper review as a classification problem.
We introduce a novel dataset comprised of 25,164 instances. Each instance contains one prompt and four candidate papers, each varying in relevance to the prompt.
We develop a machine learning (ML) model capable of determining the relevance of each paper and identifying the most pertinent one.
arXiv Detail & Related papers (2024-06-13T06:42:32Z) - Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions [62.0123588983514]
Large Language Models (LLMs) have demonstrated wide-ranging applications across various fields.
We reformulate the peer-review process as a multi-turn, long-context dialogue, incorporating distinct roles for authors, reviewers, and decision makers.
We construct a comprehensive dataset containing over 26,841 papers with 92,017 reviews collected from multiple sources.
arXiv Detail & Related papers (2024-06-09T08:24:17Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
We propose a hybrid approach that leverages deep semantic representation of research papers based on social tags assigned by users.
The proposed model is effective in recommending research papers even when the rating data is very sparse.
arXiv Detail & Related papers (2022-09-08T09:13:07Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
We cast it as a paper ranking problem based on peer review texts and reviewer scores.
We introduce a novel, multi-faceted generic evaluation framework for making final decisions based on peer reviews.
arXiv Detail & Related papers (2021-09-02T19:41:47Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
We introduce a new task of disentangled paper summarization, which seeks to generate separate summaries for the paper contributions and the context of the work.
We extend the S2ORC corpus of academic articles by adding disentangled "contribution" and "context" reference labels.
We propose a comprehensive automatic evaluation protocol which reports the relevance, novelty, and disentanglement of generated outputs.
arXiv Detail & Related papers (2020-11-06T02:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.