Multi-tracklet Tracking for Generic Targets with Adaptive Detection Clustering
- URL: http://arxiv.org/abs/2508.05172v1
- Date: Thu, 07 Aug 2025 09:05:27 GMT
- Title: Multi-tracklet Tracking for Generic Targets with Adaptive Detection Clustering
- Authors: Zewei Wu, Longhao Wang, Cui Wang, César Teixeira, Wei Ke, Zhang Xiong,
- Abstract summary: This article proposes a tracklet tracker called Multi-Tracklet Tracking (MTT) that integrates flexible tracklet generation into a multi-tracklet association framework.<n> experiments on the benchmark for generic multiple object tracking demonstrate the competitiveness of the proposed framework.
- Score: 8.637143090635396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tracking specific targets, such as pedestrians and vehicles, has been the focus of recent vision-based multitarget tracking studies. However, in some real-world scenarios, unseen categories often challenge existing methods due to low-confidence detections, weak motion and appearance constraints, and long-term occlusions. To address these issues, this article proposes a tracklet-enhanced tracker called Multi-Tracklet Tracking (MTT) that integrates flexible tracklet generation into a multi-tracklet association framework. This framework first adaptively clusters the detection results according to their short-term spatio-temporal correlation into robust tracklets and then estimates the best tracklet partitions using multiple clues, such as location and appearance over time to mitigate error propagation in long-term association. Finally, extensive experiments on the benchmark for generic multiple object tracking demonstrate the competitiveness of the proposed framework.
Related papers
- CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking [68.24998698508344]
We introduce CAMEL, a novel association module for Context-Aware Multi-Cue ExpLoitation.<n>Unlike end-to-end detection-by-tracking approaches, our method remains lightweight and fast to train while being able to leverage external off-the-shelf models.<n>Our proposed online tracking pipeline, CAMELTrack, achieves state-of-the-art performance on multiple tracking benchmarks.
arXiv Detail & Related papers (2025-05-02T13:26:23Z) - Post-Hoc MOTS: Exploring the Capabilities of Time-Symmetric Multi-Object Tracking [0.37240490024629924]
A time-symmetric tracking methodology has been introduced for the detection, segmentation, and tracking of budding yeast cells in pre-recorded samples.<n>We aim to reveal the broader capabilities, advantages, and potential challenges of this architecture across various specifically designed scenarios.<n>We present an attention analysis of the tracking architecture for both pretrained and non-pretrained models.
arXiv Detail & Related papers (2024-12-11T11:50:06Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
We propose MotionTrack, which learns robust short-term and long-term motions in a unified framework to associate trajectories from a short to long range.
For dense crowds, we design a novel Interaction Module to learn interaction-aware motions from short-term trajectories, which can estimate the complex movement of each target.
For extreme occlusions, we build a novel Refind Module to learn reliable long-term motions from the target's history trajectory, which can link the interrupted trajectory with its corresponding detection.
arXiv Detail & Related papers (2023-03-18T12:38:33Z) - Tracking by Associating Clips [110.08925274049409]
In this paper, we investigate an alternative by treating object association as clip-wise matching.
Our new perspective views a single long video sequence as multiple short clips, and then the tracking is performed both within and between the clips.
The benefits of this new approach are two folds. First, our method is robust to tracking error accumulation or propagation, as the video chunking allows bypassing the interrupted frames.
Second, the multiple frame information is aggregated during the clip-wise matching, resulting in a more accurate long-range track association than the current frame-wise matching.
arXiv Detail & Related papers (2022-12-20T10:33:17Z) - CoCoLoT: Combining Complementary Trackers in Long-Term Visual Tracking [17.2557973738397]
We propose a framework, named CoCoLoT, that combines the characteristics of complementary visual trackers to achieve enhanced long-term tracking performance.
CoCoLoT perceives whether the trackers are following the target object through an online learned deep verification model, and accordingly activates a decision policy.
The proposed methodology is evaluated extensively and the comparison with several other solutions reveals that it competes favourably with the state-of-the-art on the most popular long-term visual tracking benchmarks.
arXiv Detail & Related papers (2022-05-09T13:25:13Z) - On the detection-to-track association for online multi-object tracking [30.883165972525347]
We propose a hybrid track association algorithm that models the historical appearance distances of a track with an incremental Gaussian mixture model (IGMM)
Experimental results on three MOT benchmarks confirm that HTA effectively improves the target identification performance with a small compromise to the tracking speed.
arXiv Detail & Related papers (2021-07-01T14:44:12Z) - Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking [83.75789829291475]
We introduce a probabilistic autoregressive motion model to score tracklet proposals.
This is achieved by training our model to learn the underlying distribution of natural tracklets.
Our experiments demonstrate the superiority of our approach at tracking objects in challenging sequences.
arXiv Detail & Related papers (2020-12-03T23:59:27Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets.
We introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion.
arXiv Detail & Related papers (2020-04-16T06:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.