CWEFS: Brain volume conduction effects inspired channel-wise EEG feature selection for multi-dimensional emotion recognition
- URL: http://arxiv.org/abs/2508.05228v1
- Date: Thu, 07 Aug 2025 10:17:59 GMT
- Title: CWEFS: Brain volume conduction effects inspired channel-wise EEG feature selection for multi-dimensional emotion recognition
- Authors: Xueyuan Xu, Wenjia Dong, Fulin Wei, Li Zhuo,
- Abstract summary: A novel channel-wise EEG feature selection (CWEFS) method is proposed for multi-dimensional emotion recognition.<n>Inspired by brain volume conduction effects, CWEFS integrates EEG emotional feature selection into a shared latent structure model.<n>CWEFS incorporates adaptive channel-weight learning to automatically determine the significance of different EEG channels in the emotional feature selection task.
- Score: 6.8109977763829885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the intracranial volume conduction effects, high-dimensional multi-channel electroencephalography (EEG) features often contain substantial redundant and irrelevant information. This issue not only hinders the extraction of discriminative emotional representations but also compromises the real-time performance. Feature selection has been established as an effective approach to address the challenges while enhancing the transparency and interpretability of emotion recognition models. However, existing EEG feature selection research overlooks the influence of latent EEG feature structures on emotional label correlations and assumes uniform importance across various channels, directly limiting the precise construction of EEG feature selection models for multi-dimensional affective computing. To address these limitations, a novel channel-wise EEG feature selection (CWEFS) method is proposed for multi-dimensional emotion recognition. Specifically, inspired by brain volume conduction effects, CWEFS integrates EEG emotional feature selection into a shared latent structure model designed to construct a consensus latent space across diverse EEG channels. To preserve the local geometric structure, this consensus space is further integrated with the latent semantic analysis of multi-dimensional emotional labels. Additionally, CWEFS incorporates adaptive channel-weight learning to automatically determine the significance of different EEG channels in the emotional feature selection task. The effectiveness of CWEFS was validated using three popular EEG datasets with multi-dimensional emotional labels. Comprehensive experimental results, compared against nineteen feature selection methods, demonstrate that the EEG feature subsets chosen by CWEFS achieve optimal emotion recognition performance across six evaluation metrics.
Related papers
- ADSEL: Adaptive dual self-expression learning for EEG feature selection via incomplete multi-dimensional emotional tagging [6.914762787652603]
We propose a novel incomplete multi-dimensional feature selection algorithm for EEG-based emotion recognition.<n>The proposed method integrates an adaptive dual self-expression learning (ADSEL) with least squares regression.
arXiv Detail & Related papers (2025-08-07T10:18:37Z) - FACE: Few-shot Adapter with Cross-view Fusion for Cross-subject EEG Emotion Recognition [57.08108545219043]
Cross-subject EEG emotion recognition is challenged by significant inter-subject variability and intricately entangled intra-subject variability.<n>Recent few-shot learning paradigms attempt to address these limitations but often encounter catastrophic overfitting during subject-specific adaptation with limited samples.<n>This article introduces the few-shot adapter with a cross-view fusion method called FACE for cross-subject EEG emotion recognition.
arXiv Detail & Related papers (2025-03-24T03:16:52Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
A key aim in EEG analysis is to extract the underlying neural activation (content) as well as to account for the individual subject variability (style)
Inspired by recent advancements in voice conversion technologies, we propose a novel contrastive split-latent permutation autoencoder (CSLP-AE) framework that directly optimize for EEG conversion.
arXiv Detail & Related papers (2023-11-13T22:46:43Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Inter Subject Emotion Recognition Using Spatio-Temporal Features From
EEG Signal [4.316570025748204]
This work is about an easy-to-implement emotion recognition model that classifies emotions from EEG signals subject independently.
The model is a combination of regular, depthwise and separable convolution layers of CNN to classify the emotions.
The model achieved an accuracy of 73.04%.
arXiv Detail & Related papers (2023-05-27T07:43:19Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - SFE-Net: EEG-based Emotion Recognition with Symmetrical Spatial Feature
Extraction [1.8047694351309205]
We present a spatial folding ensemble network (SFENet) for EEG feature extraction and emotion recognition.
Motivated by the spatial symmetry mechanism of human brain, we fold the input EEG channel data with five different symmetrical strategies.
With this network, the spatial features of different symmetric folding signlas can be extracted simultaneously, which greatly improves the robustness and accuracy of feature recognition.
arXiv Detail & Related papers (2021-04-09T12:59:38Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Investigating EEG-Based Functional Connectivity Patterns for Multimodal
Emotion Recognition [8.356765961526955]
We investigate three functional connectivity network features: strength, clustering, coefficient and eigenvector centrality.
The discrimination ability of the EEG connectivity features in emotion recognition is evaluated on three public EEG datasets.
We construct a multimodal emotion recognition model by combining the functional connectivity features from EEG and the features from eye movements or physiological signals.
arXiv Detail & Related papers (2020-04-04T16:51:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.