ADSEL: Adaptive dual self-expression learning for EEG feature selection via incomplete multi-dimensional emotional tagging
- URL: http://arxiv.org/abs/2508.05229v1
- Date: Thu, 07 Aug 2025 10:18:37 GMT
- Title: ADSEL: Adaptive dual self-expression learning for EEG feature selection via incomplete multi-dimensional emotional tagging
- Authors: Tianze Yu, Junming Zhang, Wenjia Dong, Xueyuan Xu, Li Zhuo,
- Abstract summary: We propose a novel incomplete multi-dimensional feature selection algorithm for EEG-based emotion recognition.<n>The proposed method integrates an adaptive dual self-expression learning (ADSEL) with least squares regression.
- Score: 6.914762787652603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: EEG based multi-dimension emotion recognition has attracted substantial research interest in human computer interfaces. However, the high dimensionality of EEG features, coupled with limited sample sizes, frequently leads to classifier overfitting and high computational complexity. Feature selection constitutes a critical strategy for mitigating these challenges. Most existing EEG feature selection methods assume complete multi-dimensional emotion labels. In practice, open acquisition environment, and the inherent subjectivity of emotion perception often result in incomplete label data, which can compromise model generalization. Additionally, existing feature selection methods for handling incomplete multi-dimensional labels primarily focus on correlations among various dimensions during label recovery, neglecting the correlation between samples in the label space and their interaction with various dimensions. To address these issues, we propose a novel incomplete multi-dimensional feature selection algorithm for EEG-based emotion recognition. The proposed method integrates an adaptive dual self-expression learning (ADSEL) with least squares regression. ADSEL establishes a bidirectional pathway between sample-level and dimension-level self-expression learning processes within the label space. It could facilitate the cross-sharing of learned information between these processes, enabling the simultaneous exploitation of effective information across both samples and dimensions for label reconstruction. Consequently, ADSEL could enhances label recovery accuracy and effectively identifies the optimal EEG feature subset for multi-dimensional emotion recognition.
Related papers
- CWEFS: Brain volume conduction effects inspired channel-wise EEG feature selection for multi-dimensional emotion recognition [6.8109977763829885]
A novel channel-wise EEG feature selection (CWEFS) method is proposed for multi-dimensional emotion recognition.<n>Inspired by brain volume conduction effects, CWEFS integrates EEG emotional feature selection into a shared latent structure model.<n>CWEFS incorporates adaptive channel-weight learning to automatically determine the significance of different EEG channels in the emotional feature selection task.
arXiv Detail & Related papers (2025-08-07T10:17:59Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
We present a single-stage emotion recognition approach, employing a Decoupled Subject-Context Transformer (DSCT) for simultaneous subject localization and emotion classification.
We evaluate our single-stage framework on two widely used context-aware emotion recognition datasets, CAER-S and EMOTIC.
arXiv Detail & Related papers (2024-04-26T07:30:32Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
We propose a novel Joint Contrastive learning framework with Feature Alignment to address cross-corpus EEG-based emotion recognition.
In the pre-training stage, a joint domain contrastive learning strategy is introduced to characterize generalizable time-frequency representations of EEG signals.
In the fine-tuning stage, JCFA is refined in conjunction with downstream tasks, where the structural connections among brain electrodes are considered.
arXiv Detail & Related papers (2024-04-15T08:21:17Z) - Semi-Supervised Dual-Stream Self-Attentive Adversarial Graph Contrastive Learning for Cross-Subject EEG-based Emotion Recognition [19.578050094283313]
The DS-AGC framework is proposed to tackle the challenge of limited labeled data in cross-subject EEG-based emotion recognition.
The proposed model outperforms existing methods under different incomplete label conditions.
arXiv Detail & Related papers (2023-08-13T23:54:40Z) - EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based Cross-Subject Emotion Recognition [7.1695247553867345]
We propose a novel semi-supervised learning framework (EEGMatch) to leverage both labeled and unlabeled EEG data.
Extensive experiments are conducted on two benchmark databases (SEED and SEED-IV)
arXiv Detail & Related papers (2023-03-27T12:02:33Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
We propose a hierarchical framework, based on chain regression models, for affective recognition from vocal bursts.
To address the challenge of data sparsity, we also use self-supervised learning (SSL) representations with layer-wise and temporal aggregation modules.
The proposed systems participated in the ACII Affective Vocal Burst (A-VB) Challenge 2022 and ranked first in the "TWO'' and "CULTURE" tasks.
arXiv Detail & Related papers (2023-03-14T16:08:45Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - MEmoBERT: Pre-training Model with Prompt-based Learning for Multimodal
Emotion Recognition [118.73025093045652]
We propose a pre-training model textbfMEmoBERT for multimodal emotion recognition.
Unlike the conventional "pre-train, finetune" paradigm, we propose a prompt-based method that reformulates the downstream emotion classification task as a masked text prediction.
Our proposed MEmoBERT significantly enhances emotion recognition performance.
arXiv Detail & Related papers (2021-10-27T09:57:00Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
We propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative)
We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.
arXiv Detail & Related papers (2020-08-16T11:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.