CF3: Compact and Fast 3D Feature Fields
- URL: http://arxiv.org/abs/2508.05254v1
- Date: Thu, 07 Aug 2025 10:45:08 GMT
- Title: CF3: Compact and Fast 3D Feature Fields
- Authors: Hyunjoon Lee, Joonkyu Min, Jaesik Park,
- Abstract summary: 3D Gaussian Splatting (3DGS) has begun incorporating rich information from 2D foundation models.<n>We propose a top-down pipeline for constructing compact and fast 3D Gaussian feature fields, namely, CF3.
- Score: 24.16468896823192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) has begun incorporating rich information from 2D foundation models. However, most approaches rely on a bottom-up optimization process that treats raw 2D features as ground truth, incurring increased computational costs. We propose a top-down pipeline for constructing compact and fast 3D Gaussian feature fields, namely, CF3. We first perform a fast weighted fusion of multi-view 2D features with pre-trained Gaussians. This approach enables training a per-Gaussian autoencoder directly on the lifted features, instead of training autoencoders in the 2D domain. As a result, the autoencoder better aligns with the feature distribution. More importantly, we introduce an adaptive sparsification method that optimizes the Gaussian attributes of the feature field while pruning and merging the redundant Gaussians, constructing an efficient representation with preserved geometric details. Our approach achieves a competitive 3D feature field using as little as 5% of the Gaussians compared to Feature-3DGS.
Related papers
- FlexGS: Train Once, Deploy Everywhere with Many-in-One Flexible 3D Gaussian Splatting [57.97160965244424]
3D Gaussian splatting (3DGS) has enabled various applications in 3D scene representation and novel view synthesis.<n>Previous approaches have focused on pruning less important Gaussians, effectively compressing 3DGS.<n>We present an elastic inference method for 3DGS, achieving substantial rendering performance without additional fine-tuning.
arXiv Detail & Related papers (2025-06-04T17:17:57Z) - 3DGEER: Exact and Efficient Volumetric Rendering with 3D Gaussians [15.776720879897345]
We introduce 3DGEER, an Exact and Efficient Volumetric Gaussian Rendering method.<n>Our method consistently outperforms prior methods, establishing a new state-of-the-art in real-time neural rendering.
arXiv Detail & Related papers (2025-05-29T22:52:51Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required.<n>Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency.<n>We propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality.
arXiv Detail & Related papers (2025-03-21T18:55:14Z) - 3DGS$^2$: Near Second-order Converging 3D Gaussian Splatting [26.94968605302451]
3D Gaussian Splatting (3DGS) has emerged as a mainstream solution for novel view synthesis and 3D reconstruction.<n>This paper introduces a (near) second-order convergent training algorithm for 3DGS, leveraging its unique properties.
arXiv Detail & Related papers (2025-01-22T22:28:11Z) - Gradient-Weighted Feature Back-Projection: A Fast Alternative to Feature Distillation in 3D Gaussian Splatting [6.647959476396794]
Our approach back-projects 2D features into pre-trained 3D Gaussians, using a weighted sum based on each Gaussian's influence in the final rendering.
While most training-based feature field rendering methods excel at 2D segmentation but perform poorly at 3D segmentation without post-processing, our method achieves high-quality results in both 2D and 3D segmentation.
arXiv Detail & Related papers (2024-11-19T12:17:15Z) - GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting [12.342660713851227]
3D Gaussian Splatting (3DGS) has emerged as a mainstream for novel view synthesis, leveraging continuous aggregations of Gaussian functions.<n>3DGS suffers from substantial memory requirements to store the multitude of Gaussians, hindering its practicality.<n>We introduce GaussianSpa, an optimization-based simplification framework for compact and high-quality 3DGS.
arXiv Detail & Related papers (2024-11-09T00:38:06Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.<n>We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR.<n>The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized.<n>Our experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS.
arXiv Detail & Related papers (2024-03-30T16:35:38Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities.
This paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input.
arXiv Detail & Related papers (2024-03-19T17:57:52Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
We introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image.
AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization.
We propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module.
arXiv Detail & Related papers (2024-01-08T18:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.