Understanding and Mitigating Errors of LLM-Generated RTL Code
- URL: http://arxiv.org/abs/2508.05266v1
- Date: Thu, 07 Aug 2025 11:02:32 GMT
- Title: Understanding and Mitigating Errors of LLM-Generated RTL Code
- Authors: Jiazheng Zhang, Cheng Liu, Huawei Li,
- Abstract summary: Large language model (LLM) based register-transfer-level (RTL) code generation is promising but the overall success rate remains unsatisfactory.<n>We conduct a comprehensive error analysis and manual categorization.<n>Our findings reveal that most errors stem from insufficient RTL programming knowledge, poor understanding of circuit concepts, or misinterpretation of complex multimodal inputs.
- Score: 7.747889860813149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the promising potential of large language model (LLM) based register-transfer-level (RTL) code generation, the overall success rate remains unsatisfactory. Errors arise from various factors, with limited understanding of specific failure causes hindering improvement. To address this, we conduct a comprehensive error analysis and manual categorization. Our findings reveal that most errors stem not from LLM reasoning limitations, but from insufficient RTL programming knowledge, poor understanding of circuit concepts, ambiguous design descriptions, or misinterpretation of complex multimodal inputs. Leveraging in-context learning, we propose targeted error correction techniques. Specifically, we construct a domain-specific knowledge base and employ retrieval-augmented generation (RAG) to supply necessary RTL knowledge. To mitigate ambiguity errors, we introduce design description rules and implement a rule-checking mechanism. For multimodal misinterpretation, we integrate external tools to convert inputs into LLM-compatible meta-formats. For remaining errors, we adopt an iterative debugging loop (simulation-error localization-correction). Integrating these techniques into an LLM-based framework significantly improves performance. We incorporate these error correction techniques into a foundational LLM-based RTL code generation framework, resulting in significantly improved performance. Experimental results show that our enhanced framework achieves 91.0\% accuracy on the VerilogEval benchmark, surpassing the baseline code generation approach by 32.7\%, demonstrating the effectiveness of our methods.
Related papers
- DecoRTL: A Run-time Decoding Framework for RTL Code Generation with LLMs [0.0]
We show that large language models (LLMs) exhibit low confidence in regions of structural ambiguity or semantic complexity.<n>We introduce DecoRTL, a novel run-time decoding strategy, that is both syntax-aware and contrastive for RTL code generation.<n>Our approach operates entirely at inference time without requiring any additional model fine-tuning.
arXiv Detail & Related papers (2025-07-03T01:17:44Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - A Multi-Agent Approach to Fault Localization via Graph-Based Retrieval and Reflexion [8.22737389683156]
Traditional fault localization techniques require extensive training datasets and high computational resources.<n>Recent advances in Large Language Models (LLMs) offer new opportunities by enhancing code understanding and reasoning.<n>We propose LLM4FL, a multi-agent fault localization framework that utilizes three specialized LLM agents.<n> evaluated on the Defects4J benchmark, which includes 675 faults from 14 Java projects, LLM4FL achieves an 18.55% improvement in Top-1 accuracy over AutoFL and 4.82% over SoapFL.
arXiv Detail & Related papers (2024-09-20T16:47:34Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
"LLMs-as-Instructors" framework autonomously enhances the training of smaller target models.
Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model.
Within this framework, we implement two strategies: "Learning from Error," which focuses solely on incorrect responses to tailor training data, and "Learning from Error by Contrast", which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors.
arXiv Detail & Related papers (2024-06-29T17:16:04Z) - MEIC: Re-thinking RTL Debug Automation using LLMs [18.964523115622928]
This work introduces a novel framework, Make Each Iteration Count (MEIC)
MEIC is suitable for identifying and correcting both syntax and function errors.
To evaluate our framework, we provide an open-source dataset comprising 178 common RTL programming errors.
arXiv Detail & Related papers (2024-05-10T22:32:39Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Fixing Large Language Models' Specification Misunderstanding for Better Code Generation [13.494822086550604]
muFiX is a novel prompting technique to improve the code generation performance of large language models (LLMs)<n>It first exploits test case analysis to obtain specification understanding and enables a self-improvement process.<n>muFiX further fixes the specification understanding towards the direction reducing the gap between the provided understanding and the actual understanding.
arXiv Detail & Related papers (2023-09-28T02:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.